• 首页>范文 > 范文
  • 构造函数解题毕业论文范文

    数学系毕业论文范文

    谈数学困难生的辩证施教 摘要:目前中职生数学学业不良学生的比例很大,如何转化数学学业不良学生便成为教师普遍关注的紧迫课题。

    文章结合教学实践,提出了要转化数学学业不良现象必须做好的几个方面。 关键词:学困生;改革模式;辩证施教;学法指导 初中后期被遗忘的一群孩子基本上都进入了中职学习,他们基础差,特别是数学这门学科基础更差。

    如何转化数学学业不良学生便成为我们教师普遍关注的紧迫课题。这些学生由于缺乏良好的学习习惯,不能认真地、持续地听课,有意注意的时间相当短;缺乏正确的数学学习方法,仅仅是简单的模仿、识记;上课时,学习思维跟不上教师的思路,造成不再思维,不再学习的倾向;平时学习中对基础知识掌握欠佳,从而导致在解题时,缺乏条理和依据,造成解题思路的“乱”和“怪”;心理压力较大,不敢请教,怕被人认为“笨”。

    要想打破这个局面,必须做好以下几个方面: 一、树立所有学生都能教好的观念 现代教学观告诉我们,每个人均有独特的天赋和培养价值,关键在于要按照他们所表现出来的天赋,适应其特点进行教育。有材料表明,大多数学业不良学生的某些指标不仅在学生总体中具有中等水平,有的还具有较高水平,这为教师端正教学观,改革教育教学工作提供了实证性依据。

    数学学业不良学生的困难是暂时的,必须承认通过教育的改革,他们能够在原有的基础上得到适当发展。 (一)耐心疏导增强主动性 学习困难生在数学学习上既有困难又有潜能,因此教学的首要工作是转变观念,正确地对待学习困难的学生,认真分析学生学习困难的原因,有意识地“偏爱差生”,允许学生数学学习上的反复,从中来激发他们学习数学的自信心。

    中职生在过去的数学学习中受到鼓励的相当少,因此要积极创造条件让他们获得学习成功的体验,充分地鼓励肯定他们,促使他们对数学产生兴趣,使他们感到自己能学好数学。 (二)成功教育树立自信心 数学学业不良是一个相对长期的过程。

    学生由于在以前的学习中屡遭失败,使他们心灵上受到严重的“创伤”,存在着一种失败者的心态,学习自信心差。教师只有充分相信学生发展的可能性,帮助学生不断成功,提高学生自尊自信的水平,逐步转变失败心态,才能形成积极的自我学习、自我教育的内部动力机制。

    如实施成功教育,创设成功教育情境,为学业不良学生创造成功的机会。事实上,每个学业不良学生都有自己的理想和抱负,只不过因各种原因冲淡而已。

    因此,教师必须引导学业不良学生在教师的“成功圈套”中获得能够实现愿望的心理自我暗示效应,从而产生自信心,进而感到经过努力,自己完全可以实现自己的抱负,达到转化数学学业不良学生的目的。 (三)情感唤起学习热情 数学学业不良学生的转化涉及到生理学、心理学、教育管理、教学论等多个方面。

    教师不光是知识的传授者,还肩负着促进学生人格健康发展的重任。学业不良学生有多方面的需要,其中最迫切的是爱的需要、信任的需要,他们能从教师的一个眼神、一个手势、一个语态中了解到教师对他们的期望。

    因此,教师要偏爱他们,平时要利用一切机会主动地接近他们,与他们进行心理交流,和他们交朋友。哪怕是对他们的微微一笑,一句口头表扬,一个热情鼓励的目光,一次表现机会的给予,都可能为其提供热爱数学,进而刻苦钻研数学的契机,都会给学生一种无形的力量。

    二、实施“低、多、勤、快”的教学模式 帮助学生树立起学习数学的信心,为他们学好数学准备了条件,但单靠有信心,还是不够的。因此在学生树立起学习数学的自信心后,更重要的工作是创造条件使学习困难的学生真正地学习和掌握数学知识,让他们感到是自己学好了数学。

    要做到这一点就必须立足于课堂教学的改革,实行“低起点、多归纳、勤练习、快反馈”的课堂教学方法,培养学生学习的能力。 (一)低起点——引导学生积极参与 多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习,因此教学的起点必须低。

    教学中将教材原有的内容降低到学生的起点上,然后再进行正常的教学,教学中主要采用以下几种“低起点”引入法: 1.直接使用教材中易于接轨的知识作为起点。如 “不等式的性质与证明”、“三角函数”等内容,按教材中引入法为起点。

    2.以所授内容中最本质的东西作为教学的起点。如在“不等式的解法”教学中,将“区间分析法”作为掌握的重点,并以“区间分析法”为主线进行教学。

    首先从验证一元一次不等式开始,进而到一元二次不等式、高次不等式、分式不等式的解法。这就是抓住本质降低起点。

    3.以已学内容的运算法则,基本方法为教学起点。由于数学知识的逐步复杂及深化,原先的数学概念其含意会变化发展,但运算法则不变。

    例如因式分解的概念随着数域的变化而变化;关于一元二次方程的根的概念,随着数的概念的扩充而发生变化;幂的运算法则,其定义开始在正整数范围内,随着负整数、分数指数和根式的引入,幂指数便扩大到任意实数,其运算法则照常适用。 4.以基本原型作为教学的起点。

    数学概念一般不。

    浅谈如何构造奇函数解题

    函数奇偶性是函数的重要特征之一,它充分地体现了变量间的辩证统一关系.从数、形上揭示了函数的对称性.在解题教学中,深挖题目隐含条件,依据奇偶函数的性质,使一些问题独辟蹊径,解法简单化,有柳暗花明又一村之感.一、利用函数奇偶性求函数值例1 已知f(x)求f(x).评注:挖掘f(x)隐含条件,构造奇函数g(x),从整体着手,利用奇函数的性质解决问题.二、利用函数奇偶性证明整除问题例2 试证是整数.(《数学通报》1996年4月号问题1007)上例可推广为:设m、n为自然数,证明是整数.证明:令,故f(x)是x的奇次幂的整系数多项式,那么是整数.评注:本证明构造奇函数f(x),利用奇函数性质得出证明,比利用二项式定理证明简捷.三、利用函数奇偶性,解有关方程问题.例3 当实数k取何值时,方程组有惟一实数解.解:观察方程组中每个方程特点,以-x代替x,方程组不变,若也一定是它的解,而方程组有唯一解,必有x0=0,即唯一解的形式应为(0,y0)代入方程组得:解得评注:用函数的观点来研究方程,应用函数的奇偶性,找出解决问题的突破口.四、利用函数奇偶性证明不等式.例4 设a是正数,而是XOY平面内的点集,则的一个充分必要条件是(1986年上海中学生竞赛题).证明:考查,以–x替换x ,–y替换y, A、B不变.从而知A、B关于x轴,y轴对称.故只研究第一象限中A、B关系即可.即:.评注:本解法依据函数图象的对称性,简捷得出证明。

    .。

    数学论文

    说起数学思想,其实就是,就某一道题来说,有两种或以上的方法去解,也就是说,从两种或以上的角度去看问题,分析问题。

    现在就数学中四大思想作一篇论文。(数学四大思想:函数与方程思想、转化与化归思想、分类讨论思想与数形结合思想;) (一)函数与方程 函数思想,是指用函数的概念和性质去分析问题和解决问题。

    方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化等式或是不等式,然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

    “宇宙世界,充斥着等式和不等式。”换句话说,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;不等式问题也与方程是近亲,密切相关。

    应用方程思想时特别需要重点考虑的大体就是列方程、解方程和研究方程的特性。 函数描述了自然界中数量之间的关系,函数思想通过题目中数量的关系,解决问题。

    一般地,函数思想是构造函数从而利用函数的性质解题,在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。要对所给的问题观察、分析、判断比较深入、充分、全面时,才能发现由此及彼的联系。

    另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 (二)等量代换 等量代换是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

    通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。我们要不断培养和训练自觉的转化意识,这有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

    等量代换要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。它能给人带来思维的闪光点,找到解决问题的突破口。

    “解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。”

    等量代换思想方法的特点是具有灵活性和多样性。它可以在数与数、形与形、数与形之间进行转换;它可以在分析和解决实际问题的过程中进行,在普通语言向数学语言的翻译中进行;消元法、换元法、数形结合法、求值求范围问题等等,都体现了等量代换思想,但是由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

    在数学操作中实施等量代换时,我们要尽量熟悉、简单、直观、标准,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,顺水推舟,经常渗透等量代换思想,可以提高解题的水平和能力。

    (三)分类讨论 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。 引起分类讨论的原因主要是以下几个方面: ① 问题所涉及到的数学概念是分类进行定义的。

    如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。

    ② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。

    这种分类讨论题型可以称为性质型。 ③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。

    如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。

    另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其全面性,更使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复。

    解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 (四)数形结合 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

    数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。 恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”

    数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量。

    求个数学函数论文

    数学思想是人脑对现 /a>思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物。

    函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。

    这是一种考虑运动变化、相依关系,以一种状态确定地刻划另一种状态过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是在知识和方法反复学习运用中抽象出的带有观念性的指导方法。

    所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。

    下面简单介绍一下运用函数思想来解决方程、不等式、数列、参数的取值范围等问题。一、运用函数思想求解方程问题 函数与方程既是两个不同的概念,又存在着密切的联系。

    一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数。一个方程的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标。

    因此,许多有关方程的问题都可用函数思想来解决。例1 求证:不论 a取什么实数,方程x2 - ( a2 + a ) x + a - 2=0必有两个不相等的实根。

    分析:此题若用常规解法,求出判别式△是一个关于a的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数f(x)=x2-(a2+a)x+a-2,要证明命题成立,只需证明函数y=f(x)的图象与x轴有两个交点,由于它的开口向上,只要找到一个实数X0,使f(x0)例2 已知关于x的实系数二次方程x2+ax+b=0 有两个实数根α,β,证明:(I)如果 |α|(II)如果2| a ||β| 分析:本题表面上看是方程问题,方程的根的分布与参数a,b之间满足的关系式,如果用纯方程理论处理则十分繁琐;如果用函数思想来分析,将方程根的分布问题转化为函数图像与x轴交点问题,则可抓往本质。

    解:本题(I)(II)的结果是2 | a | { α,β ∈(-2,2) | b | 可设函数f(x)=x2+ax+b( I )由二次函数的图像知 f(2)>0 α,β∈(-2,2) ==>{ f(-2)>0 |b|=|α??β|0 2a> - (4+b)==>{ ==> {4-2a+b>0 2a 2|a| 0 f(2)>0(Ⅱ) 如果{ ==> { ==>{ 则 | b | 0 f(-2)>0α,β在(-2,2)之内或在(-2,2)之外,若α,β在(-2,2)之外,则 |α??β| = b > 4,这与| b | 二 、运用函数思想证明不等式 例3 设 a , b , c 均为正数,且a+b>c,a b c 求证:----- + ------ > -------1+a 1+b 1+c a b c 分析:不等式左右两边,结构相似: -----, ------, -------,因1+a 1+b 1+c此可以联想函数f(x)=x / (1+x) (x>0)的单调性。证明:先证函数f(x)=x / (1+x) (x>0)的单调性。

    任取x1>0 , x2>0,不妨设x1则f(x1) - f(x2) = ------ - ----- = ----------------1+ x1 1+ x2 (1+ x1)(1+ x2) ∵x1> 0 , x2> 0 ∴ 1+ x1 >0 , 1+ x2 >0 又∵x1x1- x2 ∴------------------- (1+ x1)(1+ x2) 即f(x1)∴函数f(x)在(0,+∞)上单调递增。∵a+b>c>0 ∴f(a+b)>f(c)a+b c 即--------- > ----1+a+b 1+ca b a b a+b ∵------ + ------ > ------- + ------- = -------1+a 1+b 1+a+b 1+a+b 1+a+b a b c ∴------ + ------ > -------1+a 1+b 1+c例4 已知a、b、x、y都是实数,且a2+b2=1,x2+y2=1,求证:ax+by≤1 分析:已知条件中有平方和等于1,可联想正、余弦之间的平方关系,再利用函数的有界性进行证明。

    证明:∵a2 + b2 = 1 , x2 + y2 = 1 ∴可设a=sinα, b=cosα, x=sinβ, y=cosβ 则有ax+by=sinαsinβ+cosαcosβ=cos(α-β)≤1 ∴ax+by≤1 三、运用函数思想解数列问题 数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2。

    n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。因此,有些数列的问题可用函数思想来解决。

    例5 在等差数列中,前n项为Sn,已知Sp = q , Sq =p( p、q∈ N*且p≠q),求Sp+q 分析:本题的常规解法是用求和公式建立方程组,求出a1和 d,进而求出Sp+q,但计算十分繁琐。若考虑到等差数列的前n项和是关于n的二次函数,且无常数项。

    故可考虑建立目标函数Sn=an2+bn(a,b为待定系数),可优化解题过程。解:设Sn=an2 + bn (a,b为待定系数) 则Sp=ap2+bp ∴ap2+bp=q (1) Sq=aq2+bq ∴aq2+bq=p (2)(1) - (2)整理得(p-q)[a (p+q) + b)]=-(p-q ) ∵p≠q ∴p-q≠0 ∴a(p+q)+b= -1 又∵Sp+q=a ( p + q )2 + b ( p + q ) = ( p + q ) [ a ( p+q ) + b ]= - (p+q) ∴Sp+q= - (p+q) 四、运用函数思想求参数(或变量)的范围 (一)构造一次函数求参数的范围 例6 若不等式2x-1>m(x2-1)对 |m|≤2的所有m均成立,求x的取值范围。

    解:构造关于m的一次函数f(m)=(x2-1)m - 2x+1,则由 f(m)f(-2)0 √7 - 1 √3 + 1 { => { => ------------ f(2)∴x的取值范围是(---------- ,----------- )2 2(二 )构造二次函数求变量的范围 例7 已知实数a , b , c , d , 满足a+b+c+d=5,a2+b2+c2+d2=7,求a的取值范围。解:构造关于x的二次函数 f(x)=(x - b)2+(x - c)2+(x - d)2=3 x2 - 2(b + c + d) x+(b2 + c2 + d2) ∵f(x)≥0 ∴△≤0 即4(b + c + d)2-12(b 2+ c2 + d2)≤0 亦即 4( 5 - a)2 - 12(7 - a2)≤0 ∴2a2-5a+2≤0 ∴1/2≤a≤2 ∴a的取值范围为[1/2,2] 这个 开头的话 和中。

    数学论文

    说起数学思想,其实就是,就某一道题来说,有两种或以上的方法去解,也就是说,从两种或以上的角度去看问题,分析问题。

    现在就数学中四大思想作一篇论文。(数学四大思想:函数与方程思想、转化与化归思想、分类讨论思想与数形结合思想;) (一)函数与方程 函数思想,是指用函数的概念和性质去分析问题和解决问题。

    方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化等式或是不等式,然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

    “宇宙世界,充斥着等式和不等式。”换句话说,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;不等式问题也与方程是近亲,密切相关。

    应用方程思想时特别需要重点考虑的大体就是列方程、解方程和研究方程的特性。 函数描述了自然界中数量之间的关系,函数思想通过题目中数量的关系,解决问题。

    一般地,函数思想是构造函数从而利用函数的性质解题,在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。要对所给的问题观察、分析、判断比较深入、充分、全面时,才能发现由此及彼的联系。

    另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 (二)等量代换 等量代换是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

    通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。我们要不断培养和训练自觉的转化意识,这有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

    等量代换要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。它能给人带来思维的闪光点,找到解决问题的突破口。

    “解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。”

    等量代换思想方法的特点是具有灵活性和多样性。它可以在数与数、形与形、数与形之间进行转换;它可以在分析和解决实际问题的过程中进行,在普通语言向数学语言的翻译中进行;消元法、换元法、数形结合法、求值求范围问题等等,都体现了等量代换思想,但是由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

    在数学操作中实施等量代换时,我们要尽量熟悉、简单、直观、标准,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,顺水推舟,经常渗透等量代换思想,可以提高解题的水平和能力。

    (三)分类讨论 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。 引起分类讨论的原因主要是以下几个方面: ① 问题所涉及到的数学概念是分类进行定义的。

    如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。

    ② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。

    这种分类讨论题型可以称为性质型。 ③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。

    如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。

    另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其全面性,更使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复。

    解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 (四)数形结合 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

    数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。 恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”

    数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形。

    求助数学论文怎么写、绿色字部分【初二

    函数思想,是指用函数的概念和性质去分析 问题、转化问题和解决问题。

    方程思想,是 从问题的数量关系入手,运用数学语言将问 题中的条件转化为数学模型(方程、不等 式、或方程与不等式的混合组),然后通过 解方程(组)或不等式(组)来使问题获 解。有时,还实现函数与方程的互相转化、 接轨,达到解决问题的目的。

    笛卡尔的方程思想是:实际问题→数学问题 →代数问题→方程问题。宇宙世界,充斥着 等式和不等式。

    我们知道,哪里有等式,哪 里就有方程;哪里有公式,哪里就有方程; 求值问题是通过解方程来实现的……等等; 不等式问题也与方程是近亲,密切相关。而 函数和多元方程没有什么本质的区别,如函 数y=f(x),就可以看作关于x、y的二元方程 f(x)-y=0。

    可以说,函数的研究离不开方 程。列方程、解方程和研究方程的特性,都 是应用方程思想时需要重点考虑的。

    函数描述了自然界中数量之间的关系,函数 思想通过提出问题的数学特征,建立函数关 系型的数学模型,从而进行研究。它体现 了“联系和变化”的辩证唯物主义观点。

    一 般地,函数思想是构造函数从而利用函数的 性质解题,经常利用的性质是:f(x)、f (x)的 单调性、奇偶性、周期性、最大值和最小 值、图像变换等,要求我们熟练掌握的是一 次函数、二次函数、幂函数、指数函数、对 数函数、三角函数的具体特性。在解题中, 善于挖掘题目中的隐含条件,构造出函数解 析式和妙用函数的性质,是应用函数思想的 关键。

    对所给的问题观察、分析、判断比较 深入、充分、全面时,才能产生由此及彼的 联系,构造出函数原型。另外,方程问题、 不等式问题和某些代数问题也可以转化为与 其相关的函数问题,即用函数思想解答非函 数问题。

    函数知识涉及的知识点多、面广,在概念 性、应用性、理解性都有一定的要求,所以 是高考中考查的重点。我们应用函数思想的 几种常见题型是:遇到变量,构造函数关系 解题;有关的不等式、方程、最小值和最大 值之类的问题,利用函数观点加以分析;含 有多个变量的数学问题中,选定合适的主变 量,从而揭示其中的函数关系;实际应用问 题,翻译成数学语言,建立数学模型和函数 关系式,应用函数性质或不等式等知识解 答;等差、等比数列中,通项公式、前n项 和的公式,都可以看成n的函数,数列问题 也可以用函数方法解决。

    等价转化等价转化是把未知解的问题转化到在已有知 识范围内可解的问题的一种重要的思想方 法。通过不断的转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式法、 简单的问题。

    历年高考,等价转化思想无处 不见,我们要不断培养和训练自觉的转化意 识,将有利于强化解决数学问题中的应变能 力,提高思维能力和技能、技巧。转化有等 价转化与非等价转化。

    等价转化要求转化过 程中前因后果是充分必要的,才保证转化后 的结果仍为原问题的结果。非等价转化其过 程是充分或必要的,要对结论进行必要的修 正(如无理方程化有理方程要求验根),它 能给人带来思维的闪光点,找到解决问题的 突破口。

    我们在应用时一定要注意转化的等 价性与非等价性的不同要求,实施等价转化 时确保其等价性,保证逻辑上的正确。著名的数学家,莫斯科大学教授C.A.雅洁卡 娅曾在一次向数学奥林匹克参赛者发表《什 么叫解题》的演讲时提出:“解题就是把要 解题转化为已经解过的题”。

    数学的解题过 程,就是从未知向已知、从复杂到简单的化 归转换过程。等价转化思想方法的特点是具有灵活性和多 样性。

    在应用等价转化的思想方法去解决数 学问题时,没有一个统一的模式去进行。它 可以在数与数、形与形、数与形之间进行转 换;它可以在宏观上进行等价转化,如在分 析和解决实际问题的过程中,普通语言向数 学语言的翻译;它可以在符号系统内部实施 转换,即所说的恒等变形。

    消去法、换元 法、数形结合法、求值求范围问题等等,都 体现了等价转化思想,我们更是经常在函 数、方程、不等式之间进行等价转化。可以 说,等价转化是将恒等变形在代数式方面的 形变上升到保持命题的真假不变。

    由于其多 样性和灵活性,我们要合理地设计好转化的 途径和方法,避免死搬硬套题型。在数学操作中实施等价转化时,我们要遵循 熟悉化、简单化、直观化、标准化的原则, 即把我们遇到的问题,通过转化变成我们比 较熟悉的问题来处理;或者将较为繁琐、复 杂的问题,变成比较简单的问题,比如从超 越式到代数式、从无理式到有理式、从分式 到整式…等;或者比较难以解决、比较抽象 的问题,转化为比较直观的问题,以便准确 把握问题的求解过程,比如数形结合法;或 者从非标准型向标准型进行转化。

    按照这些 原则进行数学操作,转化过程省时省力,有 如顺水推舟,经常渗透等价转化思想,可以 提高解题的水平和能力。分类讨论在解答某些数学问题时,有时。

    发表评论

    登录后才能评论