数学案例分析范文小学
小学数学案例分析题及答案
小学数学案例分析1、[案例描述]《带分数乘法》教学片断:⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积.”列出算式:5*2⒉算式一出现,教师就立即组织四人小组交流算法.其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)*(2+) ②5.8*2.5 ③*,其他同学拍手叫好而告终.请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析).答:以上现象是教师在使用小组合作时经常出现的一种问题.就是没有处理好小组合作和独立思考的关系.教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考.独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥.多数学习能通过独立思考解决的问题,就没必要组织合作学习.而合作学习的深度和广度应远远超过独立学习的结果.当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美.我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?2、[案例描述]记得那是一节顺利而精彩的课,上课内容是“分数的意义”.在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪.令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位'1',高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾.因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴.我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾……”下课后我找到这位同学了解情况:问:小朋友,你知道老师为什么没让你发言吗?答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好.问:平时课堂上,老师都叫哪些同学发言呢?答:差不多都是成绩较好的同学.[案例反思](可以从面向全体的角度分析):答:这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?只有最大限度地尊重个体,才有可能真正面向全体,这样的道理已经很难在传统的教学组织形式下得以落实.我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现.…3、案例描述 师:今天,在学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童百科全书》花了148元,还剩下53元,笑笑带了多少钱? 师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决? 淘气在书店买一本《童话故事》,花了3. 2元,他又买了一本数学世界,花了11. 5元.淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式:3.2+11.5=?) 师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定)师:为了帮淘气解决付钱的问题,大家都列出了正确的算式.可我们都没有尝试过两个小数怎么相加.现在就来试一试看谁能独立发现小数加法的算法. (1)学生独立思考,自主探索. (2)在独立思考的基础上,小组交流. (3)看一看教材中三位小朋友是怎么计算的.其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗?(4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?”(5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理. 师:多位数相加时,个位数字一定要对齐.这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了.小数相加时,小数点一定要对齐也是这个道理.只要小数点对齐了,所有的数位也都对齐了.教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相同单位的数才能相加”的算理没有变.所以,只要小数点对齐了,小数加法的计算与多位数加法的计算就没有什么不同了.问题讨论 (1). “小数加法”这一课,教材是让学生直接进行尝试的,本案例中教师引入时先安排了整数加法的内容,你对此有什么看法?直接安排学生尝试,对学生理解小数加减法是否有帮助? (2)、教师在学生讨论完之后,安排了看书的环节,你认为有必要吗?为什么?(3)、书中三种算法的共性是什么?为什么要让学生讨论这个问题? 案例分析(围绕上述问题分析)4、案例《9加几》前半节课的教学过程:⒈创设9+5的情境,列出数学算式.⒉学生合作交流9+5=?⒊比较算法多样化,得出“凑十法”.⒋教师布置学生以四人小组的为单位,通过摆小棒计算9+6= 9+7= 9+4= 9+3=笔者仔细观察各小组的活动情况,大多数小组同学先写出得数,再摆小棒,有一个组的同学纯粹在玩小棒.为什么会这样呢?。
结合一节课堂教学实例,分析数学工具在小学数学教学中的价值及使用
找规律教学内容:第48-49页,“想想做做”第1-4题.教学目标:1、使学生通过观察、操作等实践活动,发现事物中隐含的规律.2、培养学生初步的观察、分析、比较、归纳能力和解决简单实际问题的能力.3、使学生感受到数学与生活的密切联系,激发学习兴趣.教学准备:教学挂图,磁性小棒和圆片若干,一把小刀.教学重点难点:1、通过自主研究、与人合作感受数学与生活之间的密切联系.2、培养学生观察能力与解决问题的能力.一、激趣导入,引入规律1谈话:今天老师想和同学们一起做个游戏,看看哪个同学能发现其中的规律.游戏1:同学们把手放在背后,我们一只手上都有5个手指头,每两个手指头之间有一个空挡,你知道一只手上总共有几个空挡?游戏2:两个同学进行绑腿跑,需要一根带子绑,那你知道3个同学绑腿跑,需要几根带子,如果是10个同学呢?2学生交流得出:一只手上共有4个空挡;3个同学绑腿跑需要2根带子绑腿,10个同学绑腿跑需要9根带子绑腿.小结并揭示课题:像这样的现象在我们身边有很多,今天我们就来研究这样的规律.二、自主探索,发现规律1、 教学例题出示挂图,提问,你能从图上找出像刚才我们说的这样排列的事物吗?看看谁找的多?学生回答老师板书.提问:仔细观察每一组两种物体是怎么排列的,各有多少个,两种物体的个数有什么关系?学生讨论后汇报.提问:你发现了什么规律?在小组里说一说,各小组讨论后,指明汇报.教师总结:例题中每组两端的事物都是一一间隔排列的,同学们发现了排在两端的物体总是比拍在中间的那中物体多1个.2、 教学“试一试”出示题目要求,学生独立动手操作.提问:你摆了几根小棒?摆了几个圆?小棒的个数与圆的个数有什么关系?这种关系和在例题中发现的关系一样吗?3:联系生活,想一想,你还能在生活中找到这种规律吗?三、运用规律,解决问题1、 做49页“想想做做”第1题.指明学生说出广告牌的个数.提问你是怎么想的 2、 做“想想做做”第2题.指明学生口答.并说说这里哪个是两端的物体,哪个是中间的物体?他们的个数是什么关系?3、 做“想想做做”第3题.(1) 学生独立完成第一问,并指明学生说出自己的想法.(2) 指明学生回答第二问,学生可能有两种不同的意见,引导他们争议.四、总结评价、延伸规律.提问:今天这节课我们探索到了什么规律,能说一说吗?谈话:我们这节课发现了沿着一条直线一一间隔排列的两种物体,摆在两端的那种比另一种多1个.我们还利用发现的规律解决了一些具体问题.下一节课我们将用它们来解决更为复杂的问题。
小学数学教学案例分析
课题:探索三角形全等的条件一、教学设计: 1 学习方式: 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。
它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。
因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 学习任务分析: 充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3 学生的认知起点分析: 学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4 教学目标:(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。5 教学的重点与难点: 重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6 教学过程教学步骤 教师活动 学生活动 教学媒体(资源)和教学方式复习过渡引入新知创设情景提出问题建立模型探索发现归纳总结得出新知巩固运用及其推广反思小结提炼规律 电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角” 元素进行分类,师生共同归纳得出: 1 一个条件:一角,一边 2 两个条件:两角; 两边;一角一边 3 三个条件:三角; 三边;两角一边;两边一角按以上分类顺序动脑、动手操作,验证。教师收集学生的作品,加以比较,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。
学生得出结论后,再举例体会一下。举例说明:如老师上课用的三角尺与同学用的三角板三个角分别对应 相等,但一个大一个小,很显然不全等;再如同是等边三角形,边长不等,两个三角形也不全等。
等等。(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。由上面的结论可知,只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。举例说明该性质在生活中的应用类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习:P140 2 ( 学生举反例说明)3 ( 对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)
教师带领,回顾反思本节课对知识的研究。
小学数学案例分析
小学数学案例分析1、[案例描述]《带分数乘法》教学片断:⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”
列出算式:5*2⒉算式一出现,教师就立即组织四人小组交流算法。其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)*(2+) ②5.8*2.5 ③*,其他同学拍手叫好而告终。
请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。答:以上现象是教师在使用小组合作时经常出现的一种问题。
就是没有处理好小组合作和独立思考的关系。教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。
独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。
而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。
我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?2、[案例描述]记得那是一节顺利而精彩的课,上课内容是“分数的意义”。在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪。
令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位'1',高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾。因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴。
我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾……”下课后我找到这位同学了解情况:问:小朋友,你知道老师为什么没让你发言吗?答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好。问:平时课堂上,老师都叫哪些同学发言呢?答:差不多都是成绩较好的同学。
[案例反思](可以从面向全体的角度分析):答:这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?只有最大限度地尊重个体,才有可能真正面向全体,这样的道理已经很难在传统的教学组织形式下得以落实。我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现。
…3、案例描述 师:今天,在学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童百科全书》花了148元,还剩下53元,笑笑带了多少钱? 师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决? 淘气在书店买一本《童话故事》,花了3. 2元,他又买了一本数学世界,花了11. 5元。淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式:3.2+11.5=?) 师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定)师:为了帮淘气解决付钱的问题,大家都列出了正确的算式。
可我们都没有尝试过两个小数怎么相加。现在就来试一试看谁能独立发现小数加法的算法。
(1)学生独立思考,自主探索。 (2)在独立思考的基础上,小组交流。
(3)看一看教材中三位小朋友是怎么计算的。其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗?(4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?”(5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理。
师:多位数相加时,个位数字一定要对齐。这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了。
小数相加时,小数点一定要对齐也是这个道理。只要小数点对齐了,所有的数位也都对齐了。
教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相同单位的数才能相加”的算理没有变。所以,只要小数点对齐了,小数加法的计算与多位数加法的计算就没有什么不同了。
问题讨论 (1). “小数加法”这一课,教材是让学生直接进行尝试的,本案例中教师引入时先安排了整数加法的内容,你对此有什么看法?直接安排学生尝试,对学生理解小数加减法是否有帮助? (2)、教师在学生讨论完之后,安排了看书的环节,你认为有必要吗?为什么?(3)、书中三种算法的共性是什么?为什么要让学生讨论这个问题? 案例分析(围绕上述问题分析)4、案例《9加几》前半节课的教学过程:⒈创设9+5的情境,列出数学算式。⒉学生合作交流9+5=?⒊比较算法多样化,得出“凑十法”。
⒋教师布置学生以四人小组的为单位,通过摆小棒计算9+6= 9+7= 9+4= 9+3=笔者仔细观察各小组的活动情况,大多数小组同学先写出得数,再摆小棒,有一个组的同学纯粹在。
小学数学案例分析
像这样的么?
1、[案例描述]《带分数乘法》教学片断:
⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5*2
⒉算式一出现,教师就立即组织四人小组交流算法。
其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)*(2+) ②5.8*2.5 ③*,其他同学拍手叫好而告终。
请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。
答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?
小学数学教学案例分析
课题:探索三角形全等的条件 一、教学设计: 1 学习方式: 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。
它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。
因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 学习任务分析: 充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3 学生的认知起点分析: 学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4 教学目标:(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。5 教学的重点与难点: 重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6 教学过程 教学步骤 教师活动 学生活动 教学媒体(资源)和教学方式 复习过渡 引入新知 创设情景 提出问题 建立模型 探索发现 归纳总结 得出新知 巩固运用 及其推广 反思小结 提炼规律 电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角” 元素进行分类,师生共同归纳得出: 1 一个条件:一角,一边 2 两个条件:两角; 两边;一角一边 3 三个条件:三角; 三边;两角一边;两边一角 按以上分类顺序动脑、动手操 作,验证。教师收集学生的作品,加以比 较,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形 一定全等。
下面将研究三个条件下三角形 全等的判定。(1)已知三角形的三个角分别 为40°、60°、80°,画出这 个三角形,并与同伴比较是否 全等。
学生得出结论后,再举例体会 一下。举例说明:如老师上课用的三 角尺与同学用的三角板三个角 分别对应 相等,但一个大一个 小,很显然不全等;再如同是 等边三角形,边长不等,两个 三角形也不全等。
等等。(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角 形,并与同伴比较是否全等。
板演:三边对应相等的两个 三角形全等,简写为“边 边边”或“SSS”。由上面的结论可知,只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。举例说明该性质在生活中的应用 类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性 图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习:P140 2 ( 学生举反例说明)3 ( 对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)
教师带领,回顾反思本节课对知识的研究探。
【什么是小学数学应用题的教学案例】
什么是小学数学应用题的教学案例小学数学应用题教学案例分析在小学数学教学中,应用题的教学占有重要地位。
如何教好这部分知识,下面谈谈我的一些做法和体会。 一、培养学生的审题习惯 细致地审题,弄明白题意,是准确解答应用题的先决条件。
因此,在教学中可先让学生根据解题要求找出题中直接条件和间接条件,构建起条件与问题之间的联系,确定数量关系。为了便于分析问题中的已知量与未知量之间的相依关系,审题时可要求学生边读题边思考,用不同的符号划出条件和问题或用线段图把已知条件和所求问题表示出来。
为了培养儿童细致审题的习惯,我常把一些容易混淆的题目同时出现,让学生分析计算。例如:①图书室的科技书与故事书共3000册,科技书的册数是故事书的2/3,有科技书多少册? ②图书室有故事书3000册,科技书册数是故事书的2/3,有科技书多少册? 题①中3000册为共有数,题②中3000册是一种的,因此计算方法不相同。
经常进行此类练习,就容易养成认真审题的习惯。 二、教给学生分析应用题常用的推理方法 在解题过程中,学生往往习惯于模仿教师和例题的解答方法,机械地去完成。
因此,教给学生分析应用题的推理方法,帮助学生明确解题思路至关重要。分析法和综合法是常用的分析方法。
所谓分析法,就是从应用题中欲求的问题出发进行分析,首先考虑,为了解题需要哪些条件,而这些条件哪些是已知的,哪些是未知的,直到未知条件都能在题目中找到为止。例如:甲车一次运煤300千克,乙车比甲车多运50千克,两车一次共运煤多少千克? 指导学生口述,要求两车一次共运煤多少千克?根据题意必须知道哪两个条件(甲车运的和乙车运的)?题中列出的条件哪个是已知的(甲车运的),哪个是未知的(乙车运的),应先求什么(乙车运的300+50=350)?然后再求什么(两车一共用煤多少千克,300+350=650)? 综合法是从应用题的已知条件出发,通过分析推导出题中要求的问题。
如上例,引导学生这样想:知道甲车运煤300千克,乙车比甲车多用50千克,可以求出乙车运煤重量(300+50=350),有了这个条件就能求出两车一共运煤多少千克?(300+350=650)。通过上面题的两种解法可以看出,不论是用分析法还是用综合法,都要把应用题的已知条件和所求 问题结合起来考虑,所求问题是思考方向,已知条件是解题的依据。
三、对易混淆的问题进行对比分析 对一些有联系而又容易混淆的应用题可引导学生进行对比分析,例如:求一个数的几分之几与已知一个数的几分之几是多少,求这个数的应用题,学生往往容易混淆。一是他们分不清是用乘法还是用除法;二是分不清计算时需不需要加括号。
因此,可安排下列一组题进行对比教学。 ①果园里有梨树240棵,苹果树占梨树的1/3,有苹果树多少棵? ②果园里有梨树240棵,占苹果树的1/3,有苹果树多少棵? ③果园里有梨树240棵,苹果树比梨树少1/3,有苹果树多少棵? ④果园里有梨树240棵,比苹果树少1/3,有苹果树多少棵? ⑤果园里有梨树240棵,苹果树比梨树多1/3,有苹果棵多少棵? ⑥果园里有梨树240棵,比苹果树多1/3,有苹果树多少棵? 两数相比较,以后面的数为标准数,前面的数为比较数,即与谁相比谁为标准数(通常设标准数为1)。
已知一个数,求它的几分之几是多少与已知一个数的几分几之是多少,求这个数。这两类应用题的相同点是:都知道比较数占标准数的几分之几;不同点是:前者是已知标准数求比较数,后者是已知比较数求标准数。
题①、③、⑤都是苹果树与梨树相比较,梨树的棵数为标准数,苹果树的棵数为比较数,梨树的棵数已经知道,因此,它们属于前类用乘法。题②、④、⑥都是梨树与苹果树相比较,苹果树的棵数为标准数,梨树的棵树为比较数,苹果树的棵数为标准数,梨树的棵数为比较数,苹果树的棵数题目中都不知道,因此,它属于后类用除法。
题①、②中比较数占标准数的几分之几已经知道,计算时不用“括号”,题③、④、⑤、⑥中比较数占标准数的几分之几不知道,需由1加几分之几和1减几分之几求得,因此计算时需加“括号”。 四、要引导学生自编应用题 让学生了解应用题的结构,重视自编应用题的教学,是提高解题能力的重要环节。
在低年级进行简单应用题教学时,就让学生了解一道应用题总题由已知条件和所求问题两部分组成,因此,可进行填空练习。 如:(1)学校举行运动会有女运动员153人,男运动员比女运动员多37人,?(补问题) (2)学校举行运动会,有女运动员153人,,一共有多少人?(补合适条件) 在高年级要引导学生自编应用题,通过自编,使学生认识和掌握各类应用题的结构特点。
如: 1、按指定算式编题:如按算式240*1/3=?编一道应用题。 2、把一种应用题改编成另一种形式的应用题:如我班有45名学生,女生占2/5,女生有多少人?把它改编成一道已知一个数的几分之几是多少,求这个数的应用题。
3、指定题目类型编题,如编道反比例应用题。 指导学生自编应用题,应让学生结合实际,编写他们自己所熟悉的事物。