• 首页>范文 > 范文
  • 考研数学二总结

    1.考研数学二要怎么复习

    从六月份开始我开始做复习全书,整理题型和例题,每天学习时间大概是四个小时以上,有的时候我会学习六个小时的数学。这一过程其实就是将基础阶段的概念定理等基础知识转变成做题的思路和工具。我觉得我之所以能取得优异的成绩,一个原因是我善于总结笔记,这点是我从高中开始就引以为傲的。一般我都是先看一遍书,然后把重点和问题圈出来,再整理,对于不会做的题在整理前再自己做一遍理清思路和技巧,然后记到笔记本上。

    我的笔记是按章节分的,每章都有知识框架、内容要点、题型分类三个方面内容,这里面的知识框架在一开始的时候可能是很难概括出来的,如果放在这一阶段后期做会更好,内容要点主要用自己的语言把定理概念写出来;由于这一阶段已经做了不少的习题,因此更注重一些题型分类,把一类题归结在一起找出难点,举一反三,才能有所有提高。我总结笔记的时候在每页纸的靠边一侧留下了一条空白,这样便于之后再有的新的理解可以补充在旁边。除了自己学习外,我还报了辅导班,每天听完课之后,我都会回去总结当天的笔记,相当于复习一遍。

    第三阶段:提高阶段(10~11月)

    十月份就要开始做真题,每天一套,并且是给自己定时做。前面按套题做完后,可以把后面按章节的再做一遍。真题做完了接着就是各种模拟题,包括400题、超越135分,合肥工大五套卷和冲刺班叶老师给的资料,里面有解读大纲、考前点题和全真模拟三部分。每一套模拟我都做了两遍,有的第一遍做的很不好,但是认真总结后再做第二遍你会发现有了更多的理解,疑团就顺利打开了。当然我不建议大家做这么多模拟题,尤其是时间不够的同学,这个阶段可能更多的时间要放在政治和专业课上。数学模拟其实用叶盛标老师的就很好,400题太偏太难,我认为那不代表考研数学的主流,是非主流的。合肥工大五套卷其实也还可以,但是总体来说还是叶老师的模拟代表了考研数学的主流方向。其实不仅是数学,政治也是一样,有些偏的怪的难的有争议的知识点是不会出现在考研试卷中的,考研数学注重的还是基础知识的应用,所以我们可以大胆的放弃一些你认为的偏难题,把握住主流掌握好方法就可以了。叶老师的模拟和解读大纲我都仔细的做了,虽然做的时候感觉不难,但我们从历年真题中也发现了,数学难度每年都保持在0.5左右,一般不会有太难或者太简单的情况。

    第四阶段:冲刺阶段(12月~考前)

    这一阶段主要是回顾以前的笔记,也可以把课本拿出来翻翻,其实你会发现课本上的例题是很经典的,弄懂了例题就可以解决一类问题。所以哪个问题不清楚明确的时候可以翻开课本看看,基本的知识弄懂了,根基牢了,什么问题都好解决。除了回顾知识,还需要做的就是背诵常用公式,以免自己在考场上临时记不起来,那样会很亏的,因为你想你的知识结构和做题思路都很好了,可是就是因为几个小公式,导致最后数学差了,这样多不值得。

    2.考研数学二怎么复习

    您好!很高兴为您解答!数学复习全年规划 第一阶段夯实基础,全面复习 主要目标:基本教材阶段。

    吃透考研大纲的要求,做到准确定位,事无巨细地对大纲涉及到的知识点进行地毯式的复习,夯实基础,训练数学思维,掌握一些基本题型的解题思路和技巧,为下一个阶段的题型突破做好准备。 第二阶段熟悉题型,前后贯通 主要目标:复习全书阶段。

    大量习题训练,熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。 第三阶段查缺补漏,模拟训练 主要目标:套题、模拟训练题阶段。

    练习答题规范,保持卷面整洁,增加信心,练习掌握考试时间的分配,增强临场应变的能力,要对自己前两个阶段复习中出现含糊不清,掌握不牢的地方重点加强。 第四阶段强化记忆,保持状态 主要目标:查漏补缺,回归教材。

    强化记忆,调整心态,保持状态,积极应考。参考资料:文都资讯网。

    3.考研数学二知识点总结

    考研数学大纲内容 数二高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标)。

    4.考研数学二知识点总结

    考研数学大纲内容 数二 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用 考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、。

    5.考研数学2怎么复习合适,我底子不是很好

    这是我以前帖子的回答,我考的是数一:思路应该差不多

    我当时考的科目是数一,但是我觉得差不多。说一下我的看法吧:

    数学的话比较典型的就是两大帮派:陈文灯、李永乐。只能说各有千秋。总结一下他们的思路。

    开始复习阶段(第一轮)

    1、如果你对课本不是很熟悉,想一边复习书本一边做相应的练习题,我觉得你做李永乐的复习全书比较好,里面的知识点总结比较简练,习题的难度不是很大;

    2、如果你对课本比较熟悉,基本能够随口说出课本的章节内容,而且知识面的总体把握请很强的话,推荐陈文灯的复习全书,他里面的知识点有很多扩充,难度较李永乐稍有提高。习题的质量还不错。

    第二轮阶段:

    这个时期得多做练习题,自然陈文灯的复习全书的习题质量比较高,要再重新挨个走一遍。然后在做历年真题,个人觉得两家的分析差不多,只要讲解细致,你看自己喜欢什么风格选一本就好。另外模拟题的话:陈文登的十套模拟题也可以做一下,不过没有李永乐的400题模拟题质量高。推荐一定要做李永乐的400题。

    最后一轮:

    各种机构的推测真题都可以看一下,开阔一下视野。另外李永乐的冲刺135很有用,必看。

    这样的话,你的数学就OK了。

    6.考研数学二线代怎么复习

    先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,

    每天至少应该花2.5-3.5个小时左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。其中用1.5-2个小时左右的时间理解掌握概念、定义等,用1-1.5小时左右来做习题巩固。对于数学基础较薄弱的同学建议每天再加一个小时的复习时间用来做习题并总结。

    在复习的时候大家一定要找到合适自己的复习方法。

    7.明年考研,考研数学二该怎么复习啊,请教具体计划和方法,越具体越

    我以前考的也是数学二,我的经验就是考数二不需要报班.

    (1) 大三暑假前(09考纲出来前),参照08年的考试大纲把高等数学和线性代数教材里的内容至少过一遍.(我当年高数和线代用的都是同济大学的,事实上这3本书都很经典,推荐参考)特别是一元函数的微积分和矩阵的基本概念和公式定理,都要牢固掌握,为下一阶段的复习奠定基础.

    (2)考纲出来到10月底报名,认真做往年的真题至少2遍,(一般是近5年,但你要有条件可以从90年的真题做到08年的).做真题是复习数学二最管用的途径,重复率比较高.我当年买了一本恩波主编的数学二真题,在考试前做了3遍,感觉收获不小.

    这个阶段属于强化阶段,遇到不懂不明白的问题要及时地解决,可以回归到教材或者请教别人.

    (3)报名后到考试前一周,依据前两个阶段的复习估计自己的实力,要是基础比较扎实,主要还是做真题,同时可以适当地减少数学的复习;要还是不扎实,那就得付出更大的努力复习,同时更应该注重回归到教材,掌握基础的知识。

    (4)考试前的几天,由于主要是在看政治,所以这几天就不要做数学题了,把以前做过的看看就好.

    (5)考试.这是最重要的一个环节,成败在此一举.先做容易、会做的,再做有难度的。

    需要附带说明的几点是

    平时复习中最好勤记笔记和勤看笔记。

    做近3年真题时最好严格按考研的时间去做,体验考场的气氛以及为你的复习提供一些借鉴。

    数学二明显没有数一或数三难,主要考的是基础,所以没有必要钻那么深。教材是最主要的!!!

    跟考纲没有关系的知识肯定不考,所以无关的不看,珍惜宝贵的时间。毕竟是考试,考试一向都不会客观衡量一个人的综合素质的。

    以上仅供参考,只希望能对你有些借鉴。最后,祝福你能成功!

    回答者:huang东东 - 举人 五级 2-13 18:51

    补充:数1,2,3,4除了范围不同之外,难度也不一样。数二是最容易的。一般是统一辅导开班。只是在侧重点有所不同。对数学二而言,跟数一的一起培训,辅导班的老师会先从高数开始辅导,接下来是线性代数和概率统计。老师会在一元微积分以及偏微分方程讲完前告诉你下来的内容数二的考纲没有要求,考数二的可以不来上,等什么时候讲线性代数再来听课。我同学以前也考数二,报的是恩波暑期强化培训班。他跟我这样说的。

    还有什么问题可以消息与我交流。

    8.考研数学2有什么好的复习方法

    你好,我刚考完研,对数学复习,可以向你谈谈我的浅见:数学复习以教材为先,首先是精读教材(特别是数学二,内容比数一盒经济类都要少,所以你更有充分的时间和精力来钻研教材),最好能把书后每节的习题做一遍.应在教材上多下功夫,通读一遍,找一本有答案的参考书,把课后题都做一遍。至于定理公式,要重视在具体题目重的灵活运用,不要硬记推导过程(当然,有些推导过程本身就是不错的练习题,那可以练练),然后在下学期和暑假找一本参考书(陈文灯或李永乐都可以)做做,多做几遍,有余力可以两者都做。暑假结束后,新大纲就下来了,那时你就要根据新大纲对教材查缺补漏,同时开始做历年真题,把真题一定多做几遍。到这时候,你对考研数学就已经有了一个很清晰,系统的把握了,大约是在11月份。然后,你需要回归教材,把知识点再梳理一遍,同时开始重视定理以及公式的推导,这两年考研答题有考查基本定理的趋势,积分中值定理、拉格朗日中值定理已经考到,所以你要把重要定理练到熟练,然后在最后阶段(12月中下旬)连同真题中的做错的题再看看,就可以上战场啦!!至于视频资料,优酷上、酷六上都有不少,搜一下就能找到。但我认为不要太重视这个网上的教学资料之类的,还是要自己看书、做题,这才是硬道理!

    最后想说明的是,一定要对自己有信心,考研数学与以往你学的数学不一样,无数事实都证明,以往学不好数学的同学在考研时一样答出高分!只要你稳扎稳打、步步为营,就一定没有问题!何况这也是一次证明你自己的机会!

    希望能对你有所帮助!

    考研数学二总结

    发表评论

    登录后才能评论