• 首页>范文 > 范文
  • 高中函数题型总结

    1.高一数学函数知识点

    (一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射. 2、对于函数的概念,应注意如下几点: (1)掌握构成函数的三要素,会判断两个函数是否为同一函数. (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式. (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数. 3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起. ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域 1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如: ①分式的分母不得为零; ②偶次方根的被开方数不小于零; ③对数函数的真数必须大于零; ④指数函数和对数函数的底数必须大于零且不等于1; ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可. 已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种情况 (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式. (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可. (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域. (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.(三)、函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系 求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异. 如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用 函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.(四)、函数的奇偶性1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,。

    2.高中函数基本性质总结及典型例题

    集合与函数知识点公式定理记忆口诀

    内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

    复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

    指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

    函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

    正切函数角e68a84e8a2ade799bee5baa6e79fa5e9819331333236396431不直,余切函数角不平;其余函数实数集,多种情况求交集。

    两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

    求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

    幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

    奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

    高中数学概念总结全集

    /Article_Show.asp?ArticleID=33802

    3.高中函数的题型,及如何复习

    首先要简单复习一下函数的各种性质(单调性、最大最小值、周期性、奇偶性等),接着回顾一下各种初等函数(二次函数、指数函数、对数函数、幂函数等,重点掌握二次函数的性质,因为经常会用到二次函数函数的性质,尤其是关于它的根的分布一定要掌握),再者要复习一下零点定理和函数的求导,导函数是一个解决函数问题很重要的工具,一定要掌握如何求它的单调性以及最值,最后进入实战,在实战中不断总结各种不同的函数题型及其解法,关于这个最好做一下前几年的高考题中关于函数的题,有可能的话还可以做一下其他省份的高考题。

    根据我自己的总结以及各年的高考题,高中中函数的题型一般放在倒数第二或第三大题的位置,难度一般不是很大,如果它放在最后一道题,那难度就会加大。一般来说,函数题型主要有三小问,第一问一般是求函数的单调区间(注意:首先要求出定义域(一般直接求导即可),这是做函数题型的第一原则,否则你极易犯错!第二小问可能是求极值或是最值,或者是求某个参数的范围(这时注意用数形结合和分类讨论思想的运用)。

    第三小问一般是证明不等式,一般是恒成立问题(方法:函数法或变量分离法,具体问题具体分析),当然第二和第三问可能会颠倒过来!总之函数是贯穿整个高中的主线,是占用非常重要的地位的,一定要掌握它!最后再强调一点,做这里题型头脑一定要灵活,要根据具体问题具体分析,最好平常多积累和总结一下这一方面的题型!好了,暂时先说那么多了,希望对你有所帮助!祝你高考成功。

    4.高一函数知识点 总结 人教版

    一、函数的概念与表示 1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

    注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。

    一对多不是映射,多对一是映射2、函数构成函数概念的三要素 ①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且 ∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数四.函数的奇偶性1.定义: 设y=f(x),x∈A,如果对于任意 ∈A,都有 ,则称y=f(x)为偶函数。

    如果对于任意 ∈A,都有 ,则称y=f(x)为奇函数。2.性质:①y=f(x)是偶函数 y=f(x)的图象关于 轴对称, y=f(x)是奇函数 y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇 偶±偶=偶 奇*奇=偶 偶*偶=偶 奇*偶=奇[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2 设 是定义在M上的函数,若f(x)与g(x)的单调性相反,则 在M上是减函数;若f(x)与g(x)的单调性相同,则 在M上是增函数。

    5.高中函数基本性质总结及典型例题

    集合与函数知识点公式定理记忆口诀 内容子交并补集,还有幂指对函数。

    性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

    指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

    函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

    两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

    高中数学概念总结全集/Article_Show.asp?ArticleID=33802。

    6.高中数学题型总结

    我做数学卷的原则是小题小心做,大题大胆做。

    选择填空,这部分对于一个想要考本科A或以上的同学来说满分几乎是没有还价的。试想如果你在这里粗心错了一题,你在哪里可以把这5分找回来。我想无论在哪里,也没有这一题选择填空来得容易,所以我们不能做错。在这部分我们可以使用排除法、估算法、特殊值法等。其实来来回回都是考那几个内容,我相信在技术上大家没有任何问题,我们所要做的就是加快速度和保证正确率。我重点推荐特殊值法,取特殊的值,代入题目,例如取1,0等数代入,动点就取端点或中点。但不是每个题目都可以用这个方法,例如有些题目有多种情况,我们取值取得不科学就可能造成某些情况的缺失,所以一定要注意。还有一点,该背的公式一定要背好。选择填空争取在20分钟之内解决战斗为后面大题留出时间。

    三角函数:配角公式 升次降次公式 sin和cos的关系 这道大题一般不会存在难点,若真有题目我们没有思路可结合sinx和cosx的关系建立方程,解方程得出具体sin,cos的值再代入计算。

    概率:充分理解题目所述情况再根据其意思列表列式计算。只要注意不漏情况,这题应该也不会难倒大家。

    立体几何:高手用直接法,水平一般的建立坐标系。注意有些题目建系未必快,直接发 反而容易。

    应用题:先理解题目,再翻译题目,即根据题目意思列式。后面求最值考的就是求导和均值不等式。以满分为目标吧。

    圆锥曲线:第一问通常是求曲线方程,我们只需要代入数据即可。第二问和第三问肯定就是曲线和一条直线相交(一定会结合一条直线玩的,不然就没得玩)。只要看到直线就用“伟大定理”。到这步为止,即使题目有3个问,我们起码有6分了。后面的方法不尽相同,若我们不能直接解出答案,就考虑题目图形的几何性质。记住,圆锥曲线方程的本质是用代数去表达几何图形。来到这一步,能拿一分就一分吧。

    数列和函数:数列和函数一般都会结合不等式考的。数列一般先求出个通项公式,题目再构造一个新数列,要你求前n项的和或证明前n项和在某个范围内。求通项用Sn减Sn-1或用列项的方法解。后面构造的新数列通常会含有等差乘以等比的部分,这时候就用错位相减法(文科数学的这个几乎就是你们题目难度的极限了,不懂的查书)。有时候我们知道题目的规律但我们却不知道怎么解出来,我们就用数学归纳法(不懂的查书)。如果后面题目再有变化我也不能预测出来,所以提高我们的解题能力才是关键。对于想考重点本科的同学,无论文科理科,数学130可以说是最低要求了,加油吧。

    高中函数题型总结

    发表评论

    登录后才能评论