平面向量知识点总结
1.求平面向量的基本知识总结~找高手·
平面向量1、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A(1,2),B(4,2),则把向量 按向量 =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作: ,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与 共线的单位向量是 );(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量 、叫做平行向量,记作: ‖ ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有 );④三点 共线 共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。 的相反向量是- 。
如下列命题:(1)若 ,则 。(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若 ,则 是平行四边形。(4)若 是平行四边形,则 。
(5)若 ,则 。(6)若 ,则 。
其中正确的是_______(答:(4)(5))2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如 ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如 , , 等;(3)坐标表示法:在平面内建立直角坐标系,以与 轴、轴方向相同的两个单位向量 , 为基底,则平面内的任一向量 可表示为 ,称 为向量 的坐标, = 叫做向量 的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
3.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、,使a= e1+ e2。如(1)若 ,则 ______(答: );(2)下列向量组中,能作为平面内所有向量基底的是 A. B. C. D. (答:B);(3)已知 分别是 的边 上的中线,且 ,则 可用向量 表示为_____(答: );(4)已知 中,点 在 边上,且 , ,则 的值是___(答:0)4、实数与向量的积:实数 与向量 的积是一个向量,记作 ,它的长度和方向规定如下: 当 >0时, 的方向与 的方向相同,当 5、平面向量的数量积:(1)两个向量的夹角:对于非零向量 , ,作 , 称为向量 , 的夹角,当 =0时, , 同向,当 = 时, , 反向,当 = 时, , 垂直。
(2)平面向量的数量积:如果两个非零向量 , ,它们的夹角为 ,我们把数量 叫做 与 的数量积(或内积或点积),记作: ,即 = 。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
如(1)△ABC中, , , ,则 _________(答:-9);(2)已知 , 与 的夹角为 ,则 等于____(答:1);(3)已知 ,则 等于____(答: );(4)已知 是两个非零向量,且 ,则 的夹角为____(答: ) (3) 在 上的投影为 ,它是一个实数,但不一定大于0。如已知 , ,且 ,则向量 在向量 上的投影为______(答: ) (4) 的几何意义:数量积 等于 的模 与 在 上的投影的积。
(5)向量数量积的性质:设两个非零向量 , ,其夹角为 ,则:① ;②当 , 同向时, = ,特别地, ;当 与 反向时, =- ;当 为锐角时, >0,且 不同向, 是 为锐角的必要非充分条件;当 为钝角时, ③非零向量 , 夹角 的计算公式: ;④ 。如(1)已知 , ,如果 与 的夹角为锐角,则 的取值范围是______(答: 或 且 );(2)已知 的面积为 ,且 ,若 ,则 夹角 的取值范围是_________(答: );(3)已知 与 之间有关系式 ,①用 表示 ;②求 的最小值,并求此时 与 的夹角 的大小(答:① ;②最小值为 , )6、向量的运算:(1)几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设 ,那么向量 叫做 与 的和,即 ;②向量的减法:用“三角形法则”:设 ,由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。如(1)化简:① ___;② ____;③ _____(答:① ;② ;③ );(2)若正方形 的边长为1, ,则 =_____(答: );(3)若O是 所在平面内一点,且满足 ,则 的形状为____(答:直角三角形);(4)若 为 的边 的中点, 所在平面内有一点 ,满足 ,设 ,则 的值为___(答:2);(5)若点 是 的外心,且 ,则 的内角 为____(答: );(2)坐标运算:设 ,则:①向量的加减法运算: , 。
如(1)已知点 , ,若 ,则当 =____时,点P在第一、三象限的角平分线上(答: );(2)已知 , ,则 (答: 或 );(3)已知作用在点 的三个力 ,则合力 的终点坐标是 (答:(9,1)) ②实数与向量的积: 。③若 ,则 ,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。
如设 ,且 , ,则C、D的坐标分别是__________(答: );④平面向量数量积: 。如已知向量 =(sinx,cosx), =(sinx,sinx), =(-1,0)。
(1)若x= ,求向量 、的夹角;。
2.【求一下平面向量知识点,】
平面向量知识点汇总基本知识回顾:1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示-----(几何表示法);②用字母、等表示(字母表示法);③平面向量的坐标表示(坐标表示法):分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,叫做向量的(直角)坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标, 特别地,.;若,则,3.零向量、单位向量:①长度为0的向量叫零向量,记为; ②长度为1个单位长度的向量,叫单位向量.(注:就是单位向量)4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行.向量、、平行,记作∥∥.共线向量与平行向量关系:平行向量就是共线向量.性质:是唯一) (其中 ) 5.相等向量和垂直向量:①相等向量:长度相等且方向相同的向量叫相等向量.②垂直向量——两向量的夹角为性质: (其中 )6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法.向量加法的三角形法则和平行四边形法则.平行四边形法则: (起点相同的两向量相加,常要构造平行四边形)三角形法则 ——加法法则的推广: ……即个向量……首尾相连成一个封闭图形,则有……②向量的减法向量加上的相反向量,叫做与的差.即: -= + (-);差向量的意义: = , =, 则=- ③平面向量的坐标运算:若,则,.④向量加法的交换律:+=+;向量加法的结合律:(+) +=+ (+)⑤常用结论:(1)若,则D是AB的中点(2)或G是△ABC的重心,则7.向量的模:1、定义:向量的大小,记为 || 或 ||2、模的求法:若 ,则 ||若, 则 ||3、性质:(1); (实数与向量的转化关系)(2),反之不然(3)三角不等式:(4) (当且仅当共线时取“=”)即当同向时 ,; 即当同反向时 ,(5)平行四边形四条边的平方和等于其对角线的平方和,即8.实数与向量的积:实数λ与向量的积是一个向量,记作:λ(1)|λ|=|λ。
;(2)λ>0时λ与方向相同;λ0;当与异向时,λ。3.平面向量求重点知识总结以及特殊公式定理
向量的运算 加法运算 AC+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。
减法运算 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ 向量的加法运算、减法运算、数乘运算统称线性运算。 向量的数量积 已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。
零向量与任意向量的数量积为0。 a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。 。
4.平面向量及运算法则基础知识
设a=(x,y),b=(x',y'). 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣. 当λ>0时,λa与a同方向; 当λ1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ0)或反方向(λ。
5.平面向量知识点
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:cw0480
平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么?提示:向量可以平移.举例1已知,,则把向量按向量平移后得到的向量是_____.结果:2.零向量:长度为0的向量叫零向量,记作:,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线共线.6.相反向量:长度相等方向相反的向量叫做相反向量.的相反向量记作.举例2如下列命题:(1)若,则.(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若,则是平行四边形.(4)若是平行四边形,则.(5)若,,则.(6)若,则.其中正确的是.结果:(4)(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如,,等;3.坐标表示:在平面内建立直角坐标系,以与
6.向量的知识点
一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“ > ”错了,而| |>| |才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为( ),其中 、满足 =1(可用(cos ,sin )(0≤ ≤2π)表示).特别: 表示与 同向的单位向量。
例如:向量 所在直线过 的内心(是 的角平分线所在直线);例1、O是平面上一个定点,A、B、C不共线,P满足 则点P的轨迹一定通过三角形的内心。 (变式)已知非零向量AB→与AC→满足(AB→|AB→| +AC→|AC→| )。