• 首页>范文 > 范文
  • 数学导数知识点总结

    1.初中所有函数知识点总结谁有

    正比例函数的概念一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.正比例函数属于一次函数,但一次函数却不一定是正比例函数.正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数.正比例函数的关系式表示为:y=kx(k为比例系数)当K>0时(一三象限),K越大,图像与y轴的距离越近.函数值y随着自变量x的增大而增大.当K0时,图象位于第一、三象限,y随x的增大而增大(单调递增);当k0),此时的y与x,同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也不成正比例关系.[编辑本段]反比例函数的定义一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数.因为y=k/x是一个分式,所以自变量X的取值范围是X≠0.而y=k/x有时也被写成xy=k或y=kx-¹.[编辑本段]反比例函数表达式y=k/x 其中X是自变量,Y是X的函数y=k/x=k·1/xxy=ky=k·x^-1y=kx(k为常数(k≠0),x不等于0)[编辑本段]反比例函数的自变量的取值范围① k ≠ 0; ②一般情况下 ,自变量 x 的取值范围是 x ≠ 0 的一切实数 ; ③函数 y 的取值范围也是一切非零实数 .[编辑本段]反比例函数图象反比例函数的图象属于双曲线,曲线越来越接近X和Y轴但不会相交(K≠0).[编辑本段]反比例函数性质1.当k>0时,图象分别位于第一、三象限;当k0时.在同一个象限内,y随x的增大而减小;当k0时,函数在x0上同为减函数;k0,b>0,这时此函数的图象经过第一、二、三象限.当 k>0,bx2.故选A.三、判断函数图象的位置例3.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A.第一象限 B.第二象限C.第三象限 D.第四象限由kb>0,知k、b同号.因为y随x的增大而减小,所以kY2当X0 且X≥(X1+X2)/2时,Y随X的增大而增大,当a>0且X≤(X1+X2)/2时Y随X的增大而减小此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用).[编辑本段]二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根.函数与x轴交点的横坐标即为方程的根.1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式 y=ax^2;y=ax^2+Ky=a(x-h)^2; y=a(x-h)^2+k y=ax^2+bx+c 顶点坐标 (0,0) (0,K)(h,0) (h,k) (-b/2a,4ac-b^2/4a) 对 称 轴 x=0 x=0x=h x=h x=-b/2a 当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,当h0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h>0,k。

    2.高中数学导数知识点

    1、熟记几个基本初等函数的求导公式和导数的四则运算法则;2、能利用导数公式和运算法则求简单函数的导数。3、理解导数的几何意义,会求曲线的切线方程。

    基本上就是导数运算公式

    y=a的x次方的导数是y'=(a的x次方)乘以lna

    y=e的x次方的导数是它本身

    y=logax(a在下x在上)的导数是y'=(xlna)分之一

    ……

    然后是加减乘除的计算

    (a+b)的导数等于a的导数加上b的导数

    ……-…………………………减…………

    …………

    然后是几何意义

    求导数然后求增减区间 (导数大于0的为增)

    求方程的切线,f的导数是斜率

    3.高中数学导数中的重要知识点

    不知道你是参加哪个省市的高考。

    拿北京市为例,一半高考导数放在倒数第三题的位置,分值大约在13分左右

    如果想要考取好一点的大学,导数这道题必须要拿全分。

    所以导数的题不会太难。

    特别注意lnx,a^x,loga x这种求导会就可以了。

    首先,考试时候的导数问题中,求导后多为分式形式,分母一般会恒>0,分子一般会是二次函数

    正常的话,这个二次函数是个二次项系数含参的函数。

    之后则可以开始分类讨论了。

    分类讨论点1:讨论二次项系数是否等于0

    当然如果出题人很善良也许正好就不存在了

    这里也要适当参考第一问的答案,出题人会引导你的思维

    分类讨论点2:讨论△

    例如开口向上,△<=0则在该区间上单调递增

    分类讨论点3:如果△>0,那么可以考虑因式分解

    正常情况没有人会让你用求根公式。。考这个没意义。

    注意分类讨论点2和3的综合应用,而且画画图吧,穿针引线(注意负号)或者直接画原函数图像都行,这样错的概率会低一些

    导数的题要注意计算,例如根为1/(a+1)和1/(a-1)这种,讨论a在(0,1)上和a在(1,+无穷)上,两根大小问题,很多人都会错恩。

    4.高中数学函数部分详细的知识点总结

    首先是集合。

    (比较简单.不细说) 然后是函数部分(指数 对数 三角函数部分) 函数部分主要是记住图像.性质.对称性.奇偶性.定义域.值域等等.. 这部分尤其是三角函数公式比较多..注意做题巩固 三角函数一定要记住公式..诱导公式.2倍角.3倍角..半角..正弦余弦和差..但是对于积化和差与和差化积不用花太多时间..不会太考 接着是立体几何..因为三视图是新加内容.肯定会有体现..但是不会让你画.注意选择题 直线与圆..注意他们的方程性质.. 算法..新加的内容.一定会有体现.也不会让你写程序.注意选择.. 概率.重点是古典和几何..有限性与无限性.然后选择概型 必修四..三角函数前面已经说了..向量没什么好说的比较简单 ..必修五..等级数列和等差数列.. 注意其公式多变化..做题来体现。 然后是解不等式。

    注意揭发多变..细心仔细不会错哦 选修部分是必修的拓展。方法与必修相似。

    5.数学函数知识点总结

    数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

    中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。

    显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。

    根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。

    同样,对于元素a2, a3,……an,都有2种选择,所以,总共有种选择, 即集合A有个子集。 当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 (3)德摩根定律: 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。

    注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a>0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上 ,也应该马上可以想到m,n实际上就是方程 的2个根 5、熟悉命题的几种形式、命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。

    6、熟悉充要条件的性质(高考经常考) 满足条件,满足条件, 若 ;则是的充分非必要条件; 若 ;则是的必要非充分条件; 若 ;则是的充要条件; 若 ;则是的既非充分又非必要条件; 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 注意映射个数的求法。

    如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。 如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。

    函数的图象与直线交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法: 分式中的分母不为零; 偶次方根下的数(或式)大于或等于零; 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。

    正切函数 余切函数 反三角函数的定义域 函数y=arcsinx的定义域是 [-1, 1] ,值域是,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是.,函数y=arcctgx的定义域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 10. 如何求复合函数的定义域? 义域是_____________。

    复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。 例 若函数的定义域为,则的定义域为 。

    分析:由函数的定义域为可知:;所以中有。 解:依题意知: 解之,得 ∴ 的定义域为 11、函数值域的求法 1、直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

    例 求函数y=的值域 2、配方法 配方法是求二次函数值域最基本的方法之一。 例、求函数y=-2x+5,x[-1,2]的值域。

    3、判别式法 对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面 下面,我把这一类型的详细写出来,希望大家能够看懂 4、反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例 求函数y=值域。

    5、函数有界性法 直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。

    例 求函数y=,,的值域。 6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容 例求函数y=(2≤x≤10)的值域 7、换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。

    换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。 例 求函数y=x+的值域。

    8 数形结合法 其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例:已知点P(x.y)在圆x2+y2=1上, 例求函数y=+的值域。

    解:原函数可化简得:y=∣x-2∣+∣x+8∣ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。 由上图可知:当点P在线段AB上时, y=∣x-2∣+∣x+8∣=∣AB∣=10 当点P在线段AB的延长线或反向延长线上时, y=∣x-2∣+∣x+8∣>∣AB∣=10 故所求函数的值域为:[10,+∞) 。

    6.高一函数知识点 总结 人教版

    一、函数的概念与表示 1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

    注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。

    一对多不是映射,多对一是映射2、函数构成函数概念的三要素 ①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且 ∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数四.函数的奇偶性1.定义: 设y=f(x),x∈A,如果对于任意 ∈A,都有 ,则称y=f(x)为偶函数。

    如果对于任意 ∈A,都有 ,则称y=f(x)为奇函数。2.性质:①y=f(x)是偶函数 y=f(x)的图象关于 轴对称, y=f(x)是奇函数 y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇 偶±偶=偶 奇*奇=偶 偶*偶=偶 奇*偶=奇[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2 设 是定义在M上的函数,若f(x)与g(x)的单调性相反,则 在M上是减函数;若f(x)与g(x)的单调性相同,则 在M上是增函数。

    7.初中数学函数知识点

    1.常量和变量 在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.2.函数 设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.3.自变量的取值范围(1)整式:自变量取一切实数.(2)分式:分母不为零.(3)偶次方根:被开方数为非负数.(4)零指数与负整数指数幂:底数不为零.4.函数值 对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.5.函数的表示法(1)解析法;(2)列表法;(3)图象法.6.函数的图象 把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象. 由函数解析式画函数图象的步骤:(1)写出函数解析式及自变量的取值范围;(2)列表:列表给出自变量与函数的一些对应值;(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.7.一次函数(1)一次函数 如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数. 特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.(2)一次函数的图象 一次函数y=kx+b的图象是一条经过(0,b)点和 点的直线. 特别地,正比例函数图象是一条经过原点的直线. 需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.(3)一次函数的性质 当k>0时,y随x的增大而增大;当k直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为 .(4)用函数观点看方程(组)与不等式 ①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标. ②二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标. ③任何一元一次不等式都可以转化ax+b>0或ax+b8.反比例函数(1)反比例函数 如果 (k是常数,k≠0),那么y叫做x的反比例函数.(2)反比例函数的图象 反比例函数的图象是双曲线.(3)反比例函数的性质 ①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小. ②当k③反比例函数图象关于直线y=±x对称,关于原点对称.(4)k的两种求法 ①若点(x0,y0)在双曲线 上,则k=x0y0. ②k的几何意义:若双曲线 上任一点A(x,y),AB⊥x轴于B,则S△AOB (5)正比例函数和反比例函数的交点问题 若正比例函数y=k1x(k1≠0),反比例函数 ,则 当k1k2当k1k2>0时,两函数图象有两个交点,坐标分别为 由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.1.二次函数 如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数. 几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).2.二次函数的图象 二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线. 由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.3.二次函数的性质 二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x 时,y随x的增大而增大;当x= ,y有最小值 ;若a(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是 和 ,这两点的距离为 ;当=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点 ;当4.抛物线的平移 抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定. 初中数学知识点归纳(口诀)——函数 正比例函数的鉴别 判断正比例函数,检验当分两步走。

    一量表示另一量, 有没有。 若有再去看取值,全体实数都需要。

    区分正比例函数,衡量可分两步走。 一量表示另一量, 是与否。

    若有还要看取值,全体实数都要有。 正比例函数的图象与性质 正比函数图直线,经过 和原点。

    K正一三负二四,变化趋势记心间。 K正左低右边高,同大同小向爬山。

    K负左高右边低,一大另小下山峦。 一次函数 一次函数图直线,经过 点。

    K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。

    K称斜率b截距,截距为零变正函。 反比例函数 反比函数双曲线,经过 点。

    K正一三负二四,两轴。

    数学导数知识点总结

    发表评论

    登录后才能评论