• 首页>范文 > 范文
  • 化学选修三知识点总结

    1.高中化学选修3知识点整理一共价键二分子间作用力与物质的性质考点1

    一 共价键:原子间通过共享电子所形成的化学键【共价键(covalent bond)是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构叫做共价键.其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用.需要指出:氢键虽然存在轨道重叠,但通常不算作共价键,而属于分子间力.共价键与离子键之间没有严格的界限,通常认为,两元素电负性差值远大于1.7时,成离子键;远小于1.7时,成共价键;在1.7附近时,它们的成键具有离子键和共价键的双重特性,离子极化理论可以很好的解释这种现象.】二 分子间作用力与物质的性质考点1 键的极性与分子的极性@键的极性是由于成键原子的电负性不同而引起的.当成键原子的电负性相同时,核间的电子云密集区域在两核的中间位置,两个原子核正电荷所形成的正电荷重心和成键电子对的负电荷重心恰好重合,这样的共价键称为非极性共价键(nonpolar covalent bond).如H2、O2分子中的共价键就是非极性共价键.当成键原子的电负性不同时,核间的电子云密集区域偏向电负性较大的原子一端,使之带部分负电荷,而电负性较小的原子一端则带部分正电荷,键的正电荷重心与负电荷重心不重合,这样的共价键称为极性共价键(polar covalent bond).如HCl分子中的H-Cl键就是极性共价键.@如果分子中的键都是非极性的,共用电子对不偏向任何一个原子,整个分子的电荷分布是对称的,这样的分子叫做非极性分子.以非极性键结合成的双原子分子都是非极性分子,如H2、O2、Cl2、N2等.在以极性键结合的双原子分子如HCl的分子里,共用电子对偏向Cl原子,因此Cl原子一端相对地显负电性,H原子一端相对地显正电性,整个分子的电荷分布是不对称的,这样的分子叫做极性分子.以极性键结合成的双原子分子都是极性分子.以极性键结合成的多原子分子,可能是极性分子,也可能是非极性分子,这决定于分子中各键的空间排列.例如,CO2是直线型分子,两个O原子对称地位于C原子的两侧.O=C=O 在CO2分子中,因为O原子吸引电子的能力比C原子强,共用电子对偏向于O原子,使得O原子一端相对地显负电性,因此C=O键是极性键.但从CO2分子总体来看,两个C=O键是对称排列的,两键的极性互相抵消,整个分子没有极性(见图1-5).所以,CO2是非极性分子.H2O分子的情况不同,它的两个O—H键之间有一个夹角,约为104.5°(见图1-6).O—H键是极性键,O原子吸引电子的能力大于H原子,共用电子对偏向于O原子,使得O原子一端相对地显负电性,H原子一端相对地显正电性.由于O原子在分子的一端,整个分子电荷分布不对称,因此,H2O分子是极性分子.考点2 分子间作用力@分子间作用力又被称为范德华力,按其实质来说是一种电性的吸引力,因此考察分子间作用力的起源就得研究物质分子的电性及分子结构.@影响分子间作用力大小的因素氢键、键的极性、相对分子量.@分子间作用力的大小与物理性质组成和结构相似的物质,相对分子质量越大,分子间作用力越大,克服分子间引力使物质熔化和气化就需要更多的能量,熔、沸点越高.但存在氢键时分子晶体的熔沸点往往反常地高.。

    2.高中化学选修3知识点全部归纳(物质的结构与性质)

    第一章 原子结构与性质.一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序.②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高.基态原子核外电子的排布按能量由低到高的顺序依次排布.3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能.常用符号I1表示,单位为kJ/mol. (1).原子核外电子排布的周期性.随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.(2).元素第一电离能的周期性变化.随着原子序数的递增,元素的第一电离能呈周期性变化:★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;★同主族从上到下,第一电离能有逐渐减小的趋势.说明:①同周期元素,从左往右第一电离能呈增大趋势.电子亚层结构为全满、半满时较相邻元素要大即第 ⅡA 族、第 ⅤA 族元素的第一电离能分别大于同周期相邻元素.Be、N、Mg、P②.元素第一电离能的运用:a.电离能是原子核外电子分层排布的实验验证. b.用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱.(3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性.随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势.电负性的运用:a.确定元素类型(一般>1.8,非金属元素;1.7,离子键;碳化硅>晶体硅.6.理解金属键的含义,能用金属键的自由电子理论解释金属的一些物理性质.知道金属晶体的基本堆积方式,了解常见金属晶体的晶胞结构(晶体内部空隙的识别、与晶胞的边长等晶体结构参数相关的计算不作要求).(1).金属键:金属离子和自由电子之间强烈的相互作用.请运用自由电子理论解释金属晶体的导电性、导热性和延展性.晶体中的微粒导电性导热性延展性金属离子和自由电子自由电子在外加电场的作用下发生定向移动自由电子与金属离子碰撞传递热量晶体中各原子层相对滑动仍保持相互作用(2)①金属晶体:通过金属键作用形成的晶体.②金属键的强弱和金属晶体熔沸点的变化规律:阳离子所带电荷越多、半径越小,金属键越强,熔沸点越高.如熔点:NaK>Rb>Cs.金属键的强弱可以用金属的原子7.了解简单配合物的成键情况(配合物的空间构型和中心原子的杂化类型不作要求).概念表示条件共用电子对由一个原子单方向提供给另一原子共用所形成的共价键. A B电子对给予体 电子对接受体 其中一个原子必须提供孤对电子,另一原子必须能接受孤对电子的轨道. (1)配位键:一个原子提供一对电子与另一个接受电子的原子形成的共价键.即成键的两个原子一方提供孤对电子,一方提供空轨道而形成的共价键.(2)①.配合物:由提供孤电子对的配位体与接受孤电子对的中心原子(或离子)以配位键形成的化合物称配合物,又称络合物.②形成条件:a.中心原子(或离子)必须存在空轨道. b.配位体具有提供孤电子对的原子.③配合物的组成.④配合物的性质:配合物具有一定的稳定性.配合物中配位键越强,配合物越稳定.当作为中心原子的金属离子相同时,配合物的稳定性与配体的。

    3.求高中化学必修二第三章知识点总结我有机化学学的超烂,希望知识点

    有机化合物主要由氧元素、氢元素、碳元素组成.有机物是生命产生的物质基础. 其特点主要有: 多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等.部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得. 和无机物相比,有机物数目众多,可达几百万种.有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环.碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子.此外,有机化合物中同分异构现象非常普遍,这也是造成有机化合物众多的原因之一. 有机化合物除少数以外,一般都能燃烧.和无机物相比,它们的热稳定性比较差,电解质受热容易分解.有机物的熔点较低,一般不超过400℃.有机物的极性很弱,因此大多不溶于水.有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段.而且有机物的反应比较复杂,在同样条件下,一个化合物往往可以同时进行几个不同的反应,生成不同的产物.食品中的有机化合物: 1.人体所需的营养物质:水、糖类(淀粉)、脂肪、蛋白质、维生素、矿物质 其中,淀粉、脂肪、蛋白质、维生素为有机物. 2.淀粉(糖类)主要存在于大米、面粉等面食中; 油脂主要存在于食用油、冰激凌、牛奶等; 维生素主要存在于蔬菜、水果等; 蛋白质主要存在于鱼、肉、牛奶、蛋等; 纤维素主要存在于青菜中,有利于胃的蠕动,防止便秘. 其中淀粉、脂肪、蛋白质、纤维素是有机高分子有机化合物.分类: 一.根据碳原子结合而成的基本骨架不同,有机化合物被分为三大类:1.链状化合物 这类化合物分子中的碳原子相互连接成链状,因其最初是在脂肪中发现的,所以又叫脂肪族化合物.2.碳环化合物 这类化合物分子中含有由碳原子组成的环状结构[2],故称碳环化合物.它又可分为两类:脂环族化合物:是一类性质和脂肪族化合物相似的碳环化合物.芳香族化合物:是分子中含有苯环或稠苯体系的化合物.3.杂环化合物:组成这类化合物的环除碳原子以外,还含有其它元素的原子,叫做杂环化合物. 二、按官能团分类 决定某一类化合物一般性质的主要原子或原子团称为官能团或功能基.含有相同官能团的化合物,其化学性质基本上是相同的.[编辑本段]命名: 1.俗名及缩写 有些化合物常根据它的来源而用俗名,要掌握一些常用俗名所代表的化合物的结构式,如:木醇是甲醇的俗称,酒精(乙醇)、甘醇(乙二醇)、甘油(丙三醇)、石炭酸(苯酚)、蚁酸(甲酸)、水杨醛(邻羟基苯甲醛)、肉桂醛(β-苯基丙烯醛)、巴豆醛(2-丁烯醛)、水杨酸(邻羟基苯甲酸)、氯仿(三氯甲烷)、草酸(乙二酸)、苦味酸(2,4,6-三硝基苯酚)、甘氨酸(α-氨基乙酸)、丙氨酸(α-氨基丙酸)、谷氨酸(α-氨基戊二酸)、D-葡萄糖、D-果糖(用费歇尔投影式表示糖的开链结构)等.还有一些化合物常用它的缩写及商品名称,如:RNA(核糖核酸)、DNA(脱氧核糖核酸)、阿司匹林(乙酰水杨酸)、煤酚皂或来苏儿(47%-53%的三种甲酚的肥皂水溶液)、福尔马林(40%的甲醛水溶液)、扑热息痛(对羟基乙酰苯胺)、尼古丁(烟碱)等. 2.普通命名(习惯命名)法 要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法. 正:代表直链烷烃; 异:指碳链一端具有结构的烷烃; 新:一般指碳链一端具有结构的烷烃.3.系统命名法 系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则.其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视.要牢记命名中所遵循的“次序规则”. 1.烷烃的命名: 烷烃的命名是所有开链烃及其衍生物命名的基础. 命名的步骤及原则: (1)选主链 选择最长的碳链为主链,有几条相同的碳链时,应选择含取代基多的碳链为主链. (2)编号 给主链编号时,从离取代基最近的一端开始.若有几种可能的情况,应使各取代基都有尽可能小的编号或取代基位次数之和最小. (3)书写名称 用阿拉伯数字表示取代基的位次,先写出取代基的位次及名称,再写烷烃的名称;有多个取代基时,简单的在前,复杂的在后,相同的取代基合并写出,用汉字数字表示相同取代基的个数;阿拉伯数字与汉字之间用半字线隔开.一.各类化合物的鉴别方法 1.烯烃、二烯、炔烃: (1)溴的四氯化碳溶液,红色腿去 (2)高锰酸钾溶液,紫色腿去. 4.卤代烃:硝酸银的醇溶液,生成卤化银沉淀;不同结构的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀. 5.醇: (1)与金属钠反应放出氢气(鉴别6个碳原子以下的醇); (2)用卢卡斯试剂鉴别伯、仲、叔醇,叔醇立刻变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化. 6.酚或烯醇类化合物: (1)用三氯化铁溶液产生颜色(苯酚产生兰紫色). (2)苯酚与溴水生成三溴苯酚白色沉淀. 10.糖: (1)单糖都能与托伦试剂和斐林试剂作用,产生银镜或砖红色沉淀; (2)葡萄糖与果糖:用溴水可区别葡萄糖与果糖,葡萄糖能使溴水褪色,而。

    4.物理选修三知识点总结

    电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60*10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0*109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从高中物理电路实验A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo入入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的高中物理知识点总结电场线分布要求熟记; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60*10-19J; (8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面 十一、恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r R)或E=Ir IR也可以是E=U内 U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电高中物理公式阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联 串联电路(P、U与。

    5.高中化学选修3知识点整理

    最低0.27元/天开通百度文库会员,可在文库查看完整内容>

    原发布者:东巳宙

    高中化学选修3知识点总结 二、复习要点1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。⑤能层不同能级相同,所容纳的最多电子数相同。(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns

    6.高中化学选修3总结

    原子结构与元素的性质(第1课时) 知识与技能 1、进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系 2、知道外围电子排布和价电子层的涵义 3、认识周期表中各区、周期、族元素的原子核外电子排布的规律 4、知道周期表中各区、周期、族元素的原子结构和位置间的关系 教 学过程 〖复习〗必修中什么是元素周期律?元素的性质包括哪些方面?元素性质周期性变化的根本原因是什么? 〖课前练习〗写出锂、钠、钾、铷、铯基态原子的简化电子排布式和氦、氖、氩、氪、氙的简化电子排布式。

    一、原子结构与周期表 1、周期系: 随着元素原子的核电—荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。然后又开始由碱金属到稀有气体,如此循环往复——这就是元素周期系中的一个个周期。

    例如,第11号元素钠到第18号元素氩的最外层电子排布重复了第3号元素锂到第10号元素氖的最外层电子排布——从1个电子到8个电子;再往后,尽管情形变得复杂一些,但每个周期的第1个元素的原子最外电子层总是1个电子,最后一个元素的原子最外电子层总是8个电子。可见,元素周期系的形成是由于元素的原子核外屯子的排布发生周期性的重复。

    2、周期表 我们今天就继续来讨论一下原子结构与元素性质是什么关系?所有元素都被编排在元素周期表里,那么元素原子的核外电子排布与元素周期表的关系又是怎样呢? 说到元素周期表,同学们应该还是比较熟悉的。第一张元素周期表是由门捷列夫制作的,至今元素周期表的种类是多种多样的:电子层状、金字塔式、建筑群式、螺旋型(教材p15页)到现在的长式元素周期表,还待进一步的完善。

    首先我们就一起来回忆一下长式元素周期表的结构是怎样的?在周期表中,把能层数相同的元素,按原子序数递增的顺序从左到右排成横行,称之为周期,有7个;在把不同横行中最外层电子数相同的元素,按能层数递增的顺序由上而下排成纵行,称之为族,共有18个纵行,16 个族。16个族又可分为主族、副族、0族。

    〖思考〗元素在周期表中排布在哪个横行,由什么决定?什么叫外围电子排布?什么叫价电子层?什么叫价电子?要求学生记住这些术语。元素在周期表中排在哪个列由什么决定? 阅读分析周期表着重看元素原子的外围电子排布及价电子总数与族序数的联系。

    〖总结〗元素在周期表中的位置由原子结构决定:原子核外电子层数决定元素所在的周期,原子的价电子总数决定元素 所在的族。 〖分析探索〗每个纵列的价电子层的电子总数是否相等?按电子排布,可把周期表里的元素划分成5个区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。

    s区、d区和p区分别有几个纵列?为什么s区、d区和ds区的元素都是金属? 元素周期表可分为哪些族?为什么副族元素又称为过渡元素?各区元素的价电子层结构特征是什么? [基础要点]分析图1-16 s区 p 区 d 区 ds 区 f 区 分区原则 纵列数 是否都是金属 区全是金属元素,非金属元素主要集中 区。主族主要含 区,副族主要含 区,过渡元素主要含 区。

    [思考]周期表上的外围电子排布称为“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化。元素周期表的每个纵列上是否电子总数相同? 〖归纳〗S区元素价电子特征排布为nS1~2,价电子数等于族序数。

    d区元素价电子排布特征为(n-1)d1~10ns1~2;价电子总数等于副族序数;ds区元素特征电子排布为 (n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。原子结构与元素在周期表中的位置是有一定的关系的。

    原子核外电子总数决定所在周期数 周期数=最大能层数(钯除外) 46Pd [Kr]4d10,最大能层数是4,但是在第五周期。 (1) 外围电子总数决定排在哪一族 如:29Cu 3d104s1 10+1=11尾数是1所以,是IB。

    元素周期表是元素原子结构以及递变规律的具体体现。 〖课堂练习〗 1、下列说法正确的有( ) A.26 号元素铁属于d 区 B.主族族序数=其价电子数=最外层电子数 C.在周期表中,元素周期数=原子核外电子层数 D.最外层电子数=8的都是稀有气体元素 E.主族共有7列,副族共有7列 F.元素周期表中第四周期第VA主族的元素与第三周期IIA元素核电荷数相差13 2、在元素周期表中存在着许多的规律。

    同一主族元素的原子序数之间也有一定的规律,填写下列问题:第一、二、三、四周期中包含的元素数目分别为 , 卤族元素中F、Cl、Br的原子序数分别为 ,碱金属元素中Li、Na、K的原子序数分别为 ;体会上述数字之间的关系,找出同族元素原子序数与周期中元素数目之间的关系。 。

    3、门捷列夫当年提出的元素周期律是 ,和现在的元素周期律比较,其主要的区别是 。到元素周期表中找一个与门捷列夫元素周期律不符合的元素 。

    4、根据外围电子排布的不同,元素周期表也可以 分成不同的区域,右图是元素周期表的区域分 布示意图。请说出这样划分的依据,同时写出 S区、d区和p区的外围电子排布式。

    5、用电子排布式表示Al、Cr(原子序数为24)、Fe。

    7.人教版高中化学选修3的知识总结

    19世纪50-60年代,热力学的基本规律已明确起来,但是一些热力学概念还比较模糊,数字处理很烦琐,不能用来解决稍微复杂一点的问题,例如化学反应的方向问题。

    当时,大多数化学家正致力于有机化学的研究,也有一些人试图解决化学反应的方向问题。这种努力除了质量作用定律之外,还有其他一些人试图从别的角度进行反应方向的探索,其中已有人提出了一些经验性的规律。

    在这一时期,丹麦人汤姆生和贝特罗试图从化学反应的热效应来解释化学反应的方向性。他们认为,反应热是反应物化学亲合力的量度,每个简单或复杂的纯化学性的作用,都伴随着热量的产生。

    贝特罗更为明确地阐述了与这相同的观点,并称之为“最大功原理”,他认为任何一种无外部能量影响的纯化学变化,向着产生释放出最大能量的物质的方向进行。虽然这时他发现了一些吸热反应也可以自发地进行,但他却主观地假定其中伴有放热的物理过程。

    这一错误的论断在30年代终于被他承认了,这时他才将“最大功原理”的应用范围限制在固体间的反应上,并提出了实际上是“自由焓”的化学热的概念。 19世纪60-80年代,霍斯特曼、勒夏特列和范霍夫在这一方面也做了一定的贡献。

    首先,霍斯特曼在研究氯化铵的升华过程中发现,在热分解反应中,其分解压力和温度有一定的关系,符合克劳胥斯。

    8.人教版化学必修3知识点总结

    没有化学必修3人教版化学必修1必修2选修1-6共8本化学选修3考点(与课标对应) 一1.了解原子核外电子的运动状态。

    电子云理论、原子轨道理论。(1) 机率 (2)轮廓(2) 杂化 一2.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。

    能级的能层区别与联系; 构造原理: ns < (n-2)f <(n-1)d < np应用: (1)第几周期元素才可能有d能级: (2)最高能级为5p3的原子序号为:(3)泡利原理和洪特规则应用:注意ds区中的(n-1)d5ns1 (n-1)d10ns1(4)原子结构示意图、电子排布式、轨道式的区别(5)微粒大小比较一3.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 判断金属性非金属性强弱的依据;(1)第一电离能越大, 性越强 (2)电负性越大, 性越强 (3)电负性差>1.7 ,离子键 拓展应用:(1)最高价含氧酸酸性或最高价碱的碱性比较. (2)解释元素的“对角线”规则,列举实例予以说明。

    例:已知AlCl3是共价化合物,则BeCl2预测为何种化合物。为什么?一4.知道原子核外电子在一定条件下会发生跃迁,了解其简单应用。

    焰色反应是电子跃迁的一个重要应用一5.讨论:元素周期表中各区、周期、族元素的原子核外电子排布的规律s区、p区、d区、ds区、f区 多少个元素第一周期 第二周期第三周期第四周期第五周期第六周期第七周期常考点拓展:元素周期表中的位置关系一6.讨论:主族元素电离能的变化与核外电子排布的关系。(1)总体规律:依次升高(2)特别的:第IIA和IIIA主族元素的不同 NaAl C

    (1) 离子键长(2) 离子电荷例:MgCl2和NaCl、KCl 熔点比较二3.知道共价键的主要类型,能用键能、键长、键角等说明简单分子的某些性质。(1)键参数的应用:键能、键长、键角(2)非极性键和极性键的比较 非极性键 极性键概念 同种元素原子形成的共价键 不同种元素原子形成的共价键,共用电子对发生偏移原子吸引电子能力 相同 不同共用电子对 不偏向任何一方 偏向吸引电子能力强的原子成键原子电性 电中性 显电性形成条件 由同种非金属元素组成 由不同种非金属元素组成(3)配位键的判断:二4.分子的极性 非极性分子和极性分子的比较 非极性分子 极性分子形成原因 整个分子的电荷分布均匀,对称 整个分子的电荷分布不均匀、不对称存在的共价键 非极性键或极性键 极性键分子内原子排列 对称 不对称1. 认识共价分子结构的多样性和复杂性,能根据有关理论判断简单分子或离子的构型,能说明简单配合物 的成键情况。

    2.常见分子的类型与形状(考虑杂化的影响)(1)杂化轨道数的判断: 中心原子所连原子数+孤对电子数(2)SP直线型 SP2 正三角型 SP3正四面体型表4-5常见分子的类型与形状比较分子类型 分子形状 键角 键的极性 分子极性 代表物A 球形 非极性 He、NeA2 直线形 非极性 非极性 H2、O2AB 直线形 极性 极性 HCl、NOABA 直线形 180° 极性 非极性 CO2、CS2ABA 角形 ≠180° 极性 极性 H2O、SO2A4 正四面体形 60° 非极性 非极性 P4AB3 平面三角形 120° 极性 非极性 BF3、SO3AB3 三角锥形 ≠120° 极性 极性 NH3、NCl3AB4 正四面体形 109°28′ 极性 非极性 CH4、CCl4AB3C 四面体形 ≠109°28′ 极性 极性 CH3Cl、CHCl3AB2C2 四面体形 ≠109°28′ 极性 极性 CH2Cl23 分子极性判断:正负电中心是否重合○1只含有非极性键的单质分子是非极性分子。○2含有极性键的双原子化合物分子都是极性分子。

    ○3含有极性键的多原子分子,空间结构对称的是非极性分子;空间结构不对称的为极性分子。注意:判断ABn型分子可参考使用以下经验规律:①若中心原子A的化合价的绝对值等于该元素所在的主族序数,则为非极性分子,若不等则为极性分子;②若中心原子有孤对电子(未参与成键的电子对)则为极性分子,若无孤对电子则为非极性分子。

    二5.手性C原子的判断(1)标准:连接的四个原子或原子团都不相同,则其为手性C原子(2)例题:如在葡萄糖分子中有几个手性碳原子,与氢气加成后还有几个手性碳原子?二6.结合实例说明“等电子原理”的应用。 查阅N2 、CO的有关数据并进行比较(等电子体)。

    三1、化学键与分子间作用力 表4-1化学键与分子间作用力的比较 化学键 分子间作用力概念 相邻的原子间强烈的相互作用叫化学键 把分子聚集在一起的作用力,叫做分子间作用力,又称范德华力作用范围 分子或晶体内 分子之间作用力强弱 较强 与化学键相比弱得多影响的性质 主要影响化学性质 主要。

    9.化学选修3知识点 帮我整理下啊 谢了哥哥们

    选修三,新增添,看似繁,实不难,

    说理想,说成绩,盼学子,多努力。

    大爆炸,原子生,少量氦,大量氢,

    原子中,看电子,能量差,分七层,

    能层中,分能级,数轨道,电子添,

    泡利理,两个反,洪特则,单独占,

    构造理,排电子,铬和铜,皆不从,

    一个半,一个全,为特例,能量低,

    激发态,变基态,电子迁,光呈现,

    光谱仪,吸和放,现新素,旧素鉴,

    电子行,无规律,电子云,是几率,

    百九十,不同形,S 球,P 哑铃。

    基原子,电子排,去0族,价电来,

    价电子,看规律,周期表,分五区,

    ds ,d 紧连,s p,守两边,

    f 区,不重要,含镧锕,须知道,

    周期律,看变化,电离能,电负性,

    比半径,两因素,数能层,电荷数。

    共价键,结分子,电子对,为共用,

    电子云,球哑铃,据重叠,分键型,

    西格玛,头碰头,重叠大,键稳定,

    P P л, 肩并肩,要出现,键二三,

    键参数,能长角,稳不稳,能大小,

    键越长,能越小,分子形,看键角,

    价原同,等电体,性质似,新原理。

    分子多,形不同,价层斥,求稳定,

    A B n ,看中原,键全成,n 定形,

    分子内,存杂化,孤电对,西格玛,

    配合物,新化键,浓与稀,颜色变,

    配离子,金属成,主族少,过渡丰。

    溶不溶,看极性,非极性,电归中,

    分子间,力两面,范德华,和氢键,

    手性碳,四键连,皆不同,始为然,

    含氧酸,比酸性,非羟基,氧减氢。

    非晶体,量很少,有玻璃,和橡胶,

    得晶体,三途径,析结晶,两种凝,

    自范性,多面体,能衍射,各向异,

    多晶胞,六面体,需并置,且无隙。

    分子晶,很常见,多为气,五类判,

    配位高,密堆积,硬度小,熔沸低。

    原子晶,共价键,熔沸高,硬度好。

    电子气,金属晶,导热电,延展性,

    简单立,和K型,密堆积,Mg和Cu。

    混合晶,为石墨,碳异形,兼三性。

    离子晶,晶格能,看电荷,比半径,

    一几何,二电荷,两因素,配位数。

    乘长风,破激浪,积跬步,高峰上,

    有志者,事竟成,学与思,贵以恒。

    10.高中化学选修三的知识点

    第一章 原子结构与性质 第一节 原子结构 1. 什么叫能层 能级 2. 能层中能级符号顺序 3. 能级数与能层序数的关系 4. 画出构造原理图 5. 练习写出1-36号元素原子基态电子排布式 6. 练习简化电子排布式的写法(铁 硅) 7. 能量最低原理 8. 基态 激发态 9. 可见光产生的原因 10. 电子云 原子轨道 11. S .P原子轨道的形状 12. 练习画基态原子的 电子排布图 13. 泡利原理 洪特规则的内容 14. 原子排布规律 第二节 原子结构与元素的性质 1. 画出前36号元素在周期表中的位置 2. 什么叫价电子 3. 周期表中的5个区 4. 电离能 电负性的概念及应用 .电离能 , 电负性最大的原子 5. 元素周期律的具体内容(原子半径,得失电子能力,氧化性,还原性,化合价,金属性,非金属性,气态氢化物的稳定性。

    最高价氧化物对应的水化物的酸碱性,第一电离能,电负性) 6. 对角线规则的 含义 7. 惰性气体的相对稳定性 第二章 分子结构与性质 第一节 共价键 1. 什么叫化学键 离子键 共价键 电子式 2. 运用电子云 原子轨道怎样理解共价键 3. 怎样判断化学键的类型 4. 键能 键长 键角(应用) 5. 共价键的特性 6. 西戈马键 派键的特征及比较 7. 等电子原理 第二节 分子的立体结构 1. 分析分子的结构(三原子,四原子,五原子) 2. CO2 H2O CH2O NH3 CH4的立体结构 3. 价层电子对互斥模型理论 A 中心原子都用于形成共价键 B中心原子上有孤对电 4. 理解杂化轨道理论(SP,SP2,SP3)及应用 5. 什么叫配位键 中心离子 配位体 配位数 配位化合物(举例) 6. 向硫酸铜溶液中逐滴加入氨水的实验现象 离子方程式 7. 向氯化铁溶液中加入硫氰化钾溶液的现象 离子方程式(指出中心离子 配位体) 8. 用配位键表示四氨合铜络离子 第三节 分子的性质 1. 共价键的分类 2. 怎样区分极性分子 非极性分子 3. 什么叫范德华力 4. 范德华力对分子晶体的熔沸点有怎样的影响 5. 对结构相似的分子晶体怎样判断范德华力的大小 6. 什么叫氢键 易形成氢键的原子有那些 氢键是否属于化学键 7. 分子内形成氢键 分子间形成氢键有什么不同 8. 影响物质的溶解性的因素有那些 9. 什么叫手性原子 手性分子 10. 怎样比较无机含氧酸的酸性 第三章 晶体结构与性质 1. 晶体的分类 2. 晶体与非晶体的区别 3. 形成晶体的方法 4. 什么叫晶胞 5. 平行六面体晶胞中微粒个数的算法 6. 什么叫分子晶体 7. 特征 8. 典型的分子晶体 9. 干冰的密度为什么比冰高 10. 什么叫原子晶体 11. 原子晶体特征 12. 典型原子晶体 13. 什么叫金属键 14. 电子气理论 15. 用电子气理论解释金属的延展性 导电性 16. 金属原子在二维平面放置的方式 配位数都是多少 17. 金属原子的三维堆积方式有几种 18. 什么叫离子晶体 19. NaCl CsCl CaF2中各离子的配位数是多少 20. 离子晶体的特征 21. 同族元素的碳酸盐稳定性怎样判断 22. 什么叫晶格能 23. 影响晶格能的因素 24. 晶格能的应用。

    化学选修三知识点总结

    发表评论

    登录后才能评论