大数据分析电力范文
大数据在电力行业的应用前景有哪些
应用前景如下:参考《中国行业大数据市场发展前景预测与投资战略规划分析报告》显示, 以物联网和云计算为代表的新一代IT技术在电力行业中的广泛应用为基础,电力数据资源开始急剧增长并形成了一定的规模。作为经济社会发展的“晴雨表”,电力大数据将会在服务政府与社会、服务电力企业、服务电力用户等方面发挥积极作用。
产业关联分析
依据产业之间的关联关系、产业用电量、分析产业发展潜能。例如:根据电力大数据分析房地产泡沫(利用智能电表采集用户用电信息,统计分析房产空置率;利用房地产联网统一登记信息,统计多套房信息);依据钢铁、水泥、装饰等行业的用电量走势、分析房地产的发展走势。挖掘其他行业之间关联度。
产业结构分析
分析用电与行业分布、地区产业结构的关系。根据各地区各行业用电信息,利用大数据分析技术,分析和研究行业用电量地区结构变化、地区用电量行业结构变化。通过分析各行业、各地区的产业结构变化,为了解地区各行业发展趋势和行业发展前景提供数据支撑,等
电网企业大数据分析有什么作用?
为了顺应能源革命和数字革命融合发展趋势,积极实现“三型两网、世界一流”战略目标,亿信华辰提出了电网自动化报表管理方案,来帮助国家电力部门来实现统计报表自动生成率100%。
亿信华辰是智能数据全生命周期产品与服务提供商,提供数据采集、数据存储、数据治理、数据分析产品与服务。电网企业进行大数据分析后能实现以下目标:1、建设数据集市,实现数据充分融合,报表数据统一从数据集市输出,保证各专业报表输出重叠部分能够保持一致,消除信息孤岛,报表对内对外统一提供。
2、在保证基础报表管理的基础上,实现电网业务平台化支撑,建设数据可视化分析、自主分析、智能分析等等,助力公司逐步实现报表自动化,切实推进基层减负。
大数据在电力行业的应用前景有哪些
大数据是指无法在可容忍的时间内用传统信息技术和软硬件工具对其进行感知、获取、管理、处理和服务的数据集合。
大数据已经渗透到每一个行业和业务职能领域,并逐渐成为重要的生产因素。
电力大数据:
对于电力行业而言,电力生产涉及的运行工况参数、设备运行状态等实时生产数据,现场总线系统所采集的设备监测数据以及发电量电压稳定性等方面的数据,电力企业运营和管理数据如交易电价、售电量用电、客户信息、综合数据等共同构成了。
根据电力行业特征,电力大数据主要来源于:电力生产、管理运营、智能电网。
智慧电力解决方案:利用智能和科学的智慧电力解决方案,如管理及优化企业停电计划的智能停电管理系统,帮助电网企业优化建设改造投资计划的智能电网评估与投资优化决策系统,可智能感知电网实时运行状态并辅助监管人员决策的电网状态智能感知与报警系统等。
大数据支撑智能电网发展:
在本质上,智能电网是“大数据”在电力上的应用,智能电网的理念是通过获取更多的如何用电、怎样用电的信息,来优化电的生产、分配以及消耗。
在智能电网中引入了信息流的概念,即电网要能够把电能流信息流结合在一起,实现传输能源的同时实现数据的采集。智能电网还通过优化模型对数据进行深度挖掘和分析,预测电能流的情况,最终实现清洁发电、高效输电、动态配电、合理用电的智慧电力的目标。这些目标的实现都需要电力大数据
的支撑。
信息化与智能化是电力行业发展的趋势,而若要实现电网的信息化与智能化,电力大数据 将是不可或缺的支撑。
大数据在电力行业的应用前景有哪些
前景还是很广的,参考《中国行业大数据市场发展前景预测与投资战略规划分析报告》显示,对于电力行业而言,电力生产涉及的运行工况参数、设备运行状态等实时生产数据,现场总线系统所采集的设备监测数据以及发电量电压稳定性等方面的数据,电力企业运营和管理数据如交易电价、售电量用电、客户信息、综合数据等共同构成了电力大数据 。
近年来,在电力领域大数据已经得到了广泛关注,国内的一些专业机构和高校开展了电力大数据理论和技术研究,我国电力行业也在积极开展大数据研究的应用开发,电网企业、发电企业在电力系统各专业领域开展大数据应用实践,国家电网公司启动了多项智能电网大数据应用研究项目。 借助大数据技术,对电网运行的实时数据和历史数据进行深层挖掘分析,可掌握电网的发展和运行规律,优化电网规划,实现对电网运行状态的全局掌控和对系统资源的优化控制,提高电网的经济性、安全性和可靠性。
基于天气数据、环境数据、输变电设备监控数据,可实现动态定容、提高输电线路利用率,也可提高输变电设备运检效率与运维管理水平;基于WAMS数据、调度数据和仿真计算历史数据,分析电网安全稳定性的时空关联特性,建立电网知识库,在电网出现扰动后,快速预测电网的运行稳定性,并及时采取措施,可有效提高电网的安全稳定性。
电力行业如何应用大数据
挑战中见需求:
质量较低、共享不畅、防御脆弱、基础不牢,对于这些电力行业推进大数据的困扰,电信行业是不是也有似曾相识的感觉?这些问题中的一部分,电信业同样需要深思;还有一些问题,则恰恰是电信业的长处,是电信业推进电力行业信息化的机遇。
数据质量较低,数据管控能力不强。大数据时代,数据质量的高低、数据管控能力的强弱直接影响了数据分析的准确性和实时性。目前,电力行业数据在可获取的颗粒程度,数据获取的及时性、完整性、一致性等方面的表现均不尽如人意,数据源的唯一性、及时性和准确性急需提升,部分数据尚需手动输入,采集效率和准确度还有所欠缺,行业中企业缺乏完整的数据管控策略、组织以及管控流程。
如何从海量数据中提取有价值的信息?这也是电信业面临的问题。有观点认为,可以用智能信息基础设施替换复杂的孤立的数据库,让企业能够在需要时捕捉、存储信息。也有观点认为,可以倚靠软件的处理能力来甄别垃圾数据和有价值数据。究竟哪种方式更为有效,目前仍无定论。而无论哪种情况,都需要制定一个数据采集的标准,在时间、精度上进行规范,从而为后续的数据分析打好基础。
数据共享不畅,数据集成度不高。大数据技术的本质是从关联复杂的数据中挖掘知识,提升数据价值,单一业务、类型的数据即使体量再大,缺乏共享集成,其价值就会大打折扣。目前,电力行业缺乏行业层面的数据模型定义与主数据管理,各单位数据口径不一致。行业中存在较为严重的数据壁垒,业务链条间也尚未实现充分的数据共享,数据重复存储的现象较为突出。
打破企业的门户之见,在行业中建立一个资源池,让使用者可以按需获取数据资源。从电信业的角度来看,现在,电信运营商之间的合作在不断推进,例如,运营商开发了融合的手机游戏计费平台;在北京电信网上营业厅微信平台上,用户不仅可以自助查询电信业务,还能查询联通和移动业务的使用费,这样共享数据资源的经验也可在大数据的应用过程中加以推广。
防御能力不足,信息安全面临挑战。电力大数据由于涉及众多电力用户的隐私,对信息安全也提出了更高的要求。电力企业地域覆盖范围极广,各类防护体系建设不平衡,信息安全水平不一致,特别是偏远地区单位防护体系尚未全面建立,安全性有待提高。行业中企业的安全防护手段和关键防护措施也需要进一步加强,从目前的被动防御向多层次、主动防御转变。
建立与大数据相适应的安全和隐私保护机制,通过技术手段和加强企业自律来保证数据的安全。
承载能力不足,基础设施亟待完善。电力数据储存时间要求以及海量电力数据的爆发式增长对IT基础设施提出了更高的要求。目前,电力企业大多已建成一体化企业级信息集成平台,能够满足日常业务的处理要求,但其信息网络传输能力、数据存储能力、数据处理能力、数据交换能力、数据展现能力以及数据互动能力都无法满足电力大数据的要求,尚需进一步加强。
在这方面,电力行业和电信业各有优势。尽管电力行业也在进行宽带建设以及智慧社区的建设,但是,所谓术业有专攻,在IT基础设施尤其是网络基础设施上,电信业在运维、计费等方面有着得天独厚的优势。同时,在数据中心的建设上,电力行业对以电能为代表的能耗问题又有着丰富的经验。因此,两个行业不妨加强合作,实现共赢。
相关人才欠缺,专业人员供应不足。大数据是一个崭新的事业,电力大数据的发展需要新型的专业技术人员,例如大数据处理系统管理员、大数据处理平台开发人员、数据分析员和数据科学家等。而当前行业内外此类技术人员的缺乏将会成为影响电力大数据发展的一个重要因素。
加强大数据人才的培养,鼓励企业内部在大数据领域的创新。
电力企业从大数据中得到了什么?
智能电网就是“大数据”这个概念在电力行业中的应用,就是通过网络将用户的用电习惯等信息传回给电网企业的信息中心,进行分析处理,并对电网规划、建设、服务等提供更可靠的依据。
日前,美国加州大学洛杉矶分校的研究者就根据“大数据”理论设计了一款“电力地图”,将人口调查信息、电力企业提供的用户实时用电信息和地理、气象等信息全部集合在一起,制作了一款加州地图。 该图以街区为单位,展示每个街区在当下时刻的用电量,甚至还可以将这个街区的用电量与该街区人的平均收入和建筑物类型等相比照,从而得出更为准确的社会各群体的用电习惯信息。
这个“大数据”地图也为城市和电网规划提供了直观有效的负荷数预测依据,也可以按照图中显示的停电频率较高、过载较为严重的街区进行电网设施的优先改造。 同时,对于风能、太阳能等具有间歇性的新能源,通过“大数据”分析进行有效地调节,也可以使新能源更好地与传统的水火电进行互补,更为灵活地出力。