• 首页>范文 > 范文
  • 数学与应用数学专业毕业论文范文

    如何写数学与应用数学专业的论文我是一位大一的学生,导员老师为了

    虽然我没写过论文,但还是想提点建议,楼主不妨考虑一下。

    作为大一学生,限于学识和能力,要写作的所谓“专业论文”,不会要求达到毕业论文那样高的水平,只要对所学过某一方面的知识和方法作一个较为系统的整理就可以了。鉴于此,下面就楼主所提到的四门课程各拟一题,仅供参考: 1.数学分析:极限的求法; 2.高等代数:行列式的计算方法; 3.空间解析几何:仿射变换及其应用; 4.高等几何:高等几何在平面几何证题中的应用。

    个人建议:前两个题目比较容易下手,而且收集资料比较方便,可以优先考虑。当然,楼主也可以通过google,搜索“数学系毕业论文题目”,去寻找您觉得更合适的课题。

    应用数学专业毕业论文

    先修课程:数学与应用数学专业主要课程、教育类课程等 适用专业:数学与应用数学(本科、师范) 一、目的 培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。

    使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。

    二、论文选题 论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑: 1.结合自己所学的专业知识,进行某一专业方向上的学术探讨; 2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合; 3.结合自己所学的专业知识,联系实际解决一些应用问题; 4.对中学有关数学课程的教材、教学方法进行专题研究; 5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨; 6.对新课程改革的理论与实践进行探讨。 论文课题不宜过大,难易程度要适当。

    两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。

    三、对毕业论文的基本要求 1.立论、观点要符合马克思主义基本原理; 2.对学术的探讨要符合科学性和逻辑性; 3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法; 4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确; 5.文字通顺,表达确切,书写规范,独立完成; 6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。

    论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码; 7.论文应包括英文名、英文摘要和英文关键词; 8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。

    四、毕业论文成绩评定 1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。 2.成绩分5个等级:优秀、良好、中等、及格、不及格。

    毕业生毕业论文统一格式要求 一、论文用纸:B5纸打印。 二、论文标题: 1、主标题:用小二号黑体字,置于首页第一行,居中。

    2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。

    三、论文正文: 1、字体:用四号仿宋体。 2、段落:行距为24磅。

    3、页码:居中。 四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。

    五、注释:如有注释,皆在正文之后注明。

    数学与应用数学大学导论课论文怎么写

    (一)题名(Title,Topic) 题名又称题目或标题。

    题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。论文格式相关书籍 论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息,也是必须考虑到有助于选定关键词不达意和编制题录、索引等二次文献可以提供检索的特定实用信息。

    论文题目十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一句话:“论文题目是文章的一半”。

    对论文题目的要求是:准确得体:简短精炼:外延和内涵恰如其分:醒目。(二)作者姓名和单位(Author and department) 这一项属于论文署名问题。

    署名一是为了表明文责自负,二是记录作用的劳动成果,三是便于读者与作者的联系及文献检索(作者索引)。大致分为二种情形,即:单个作者论文和多作者论文。

    后者按署名顺序列为第一作者、第二作者……。重要的是坚持实事求是的态度,对研究工作与论文撰写实际贡献最大的列为第一作者,贡献次之的,列为第二作者,余类推。

    注明作者所在单位同样是为了便于读者与作者的联系。(三)摘要(Abstract) 论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。

    它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。

    摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。(四)关键词(Key words) 关键词属于主题词中的一类。

    主题词除关键词外,还包含有单元词、标题词的叙词。 主题词是用来描述文献资料主题和给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。

    主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。 技巧—:依据学术方向进行选题。

    论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。

    技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。

    技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。

    技巧四:从小从专进行选题。所谓从小从专,即是指软文撰稿者在进行选则和提炼标题时,要从专业出发,从小处入手进行突破,切记全而不专,大而空洞。

    数学专业毕业论文

    数学是研究数量、结构、变化以及空间模型等概念的一门学科。

    通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。

    数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。

    例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。 数学是研究现实世界中数量关系和空间形式的科学。

    简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。

    基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。

    从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因著和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。

    数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。

    创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。

    布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

    数学专业毕业论文

    数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。

    数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。

    数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。

    基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因著和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。

    今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。

    创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

    怎样找优秀的数学与应用数学毕业论文

    浅谈比较法在小学数学教学中的应用

    著名教育家乌申斯基认为:“比较是一切理解和思维的基础,我们正是通过比较来了解世界上的一切的。 ”小学数学中有许多内容既有联系又有区别,在教学中充分运用比较的方法,有助于突出教学重点,突破教学 难点,使学生容易接受新知识,防止知识的混淆,提高辨别能力,从而扎实地掌握数学知识,发展逻辑思维能 力。

    一、概念教学中的比较

    概念是对事物本质属性的反映,它既是思维的基础,又是思维的“细胞”,是正确推理和判断的依据。小 学数学中概念描述较抽象,小学生学习概念普遍存在一定难度,但许多概念之间有着密切联系,若在概念教学 中充分运用比较,便能使学生准确、牢固地掌握数学概念。

    1.引入概念时的比较。在引入一个新的数学概念之前,教师首先要分析清楚这个概念是建立在哪些已学的 数学概念基础上,然后从复习旧概念的过程中,自然地引出新概念,使学生明确新旧概念之间的区别与联系, 为准确理解新概念打下坚实的基础。

    2.巩固概念时的比较。学了一个新的数学概念后,为使学生巩固所学的概念,教师应引导学生把所学的概 念与一些相关的易混淆的概念进行比较,达到正确理解概念实质的目的。

    3.深化、应用概念时的比较。掌握数学概念的目的是为了运用所学概念解决实际问题,而运用概念的过程 又是深化理解概念的过程,可使学生更深刻地理解概念的含义。

    二、应用题教学中的比较

    应用题教学,最有利于培养学生的思维能力和分析问题、解决问题的能力。而应用题教学中充分运用比较 法,能使学生在比较中理解数量关系,在比较中掌握解题方法。

    1.简单应用题与复合应用题比较。任何一道复合应用题都是由若干道相关的简单应用题复合而成的。在教 复合应用题时,先让学生做若干道与之相关的简单应用题,然后引导学生将这些简单的应用题合并成复合应用 题,再比较简单应用题与复合应用题的联系与区别,使学生很自然地掌握解答复合应用题的关键,并把复合应 用题分成若干道简单应用题。这样就有效地提高了解答应用题的能力。

    2.互逆关系应用题的比较。有许多应用题,它们之间的数量关系具有互逆的特点。比较它们的解题思路, 明确它们之间的相互联系,可使各个零碎的知识串成线、联成网,从而构建起完整的知识结构。

    3.应用题“多变”中的比较。应用题“多变”,包括“一题多解”、“条件变换形式叙述”、“一题多编 ”等。通过比较,可以培养学生思维的灵活性与创造性,使学生的思维在“变”中得到锻炼,克服思维定势的 干扰,能使学生找出最佳的解题方法,提高思维的敏捷性。

    总之,在教学中适时、恰当地运用比较法,能使学生学得轻松、愉快,学得扎实,从而有效地提高学习效 率。 你看看,好了吧

    大学数学论文范文

    数学与生活 自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。

    数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。 由于以前选择了文科,所以到大学才接触到危机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。

    但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。

    同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。反过来,数学的这些创造性地成果往往又作用于生活的各个方面。

    例如,商业和金融事务、航海和历法的计算、桥梁、水坝、教堂和供电的建造、作战武器和工事的设计,以及许多人类的需要。与此同时,数学又能对这些问题给出最完满的解决。

    在我们高速发展的社会中,数学被当作普遍工具的事实更是毋庸置疑的。 在我们的日常生活中,微积分确确实实的存在着,只是我们缺少善于发现的精神而已。

    比如说,我们在养花,而花瓶中水过多了,我们这时就要倒出部分水,这是上活中的公式就产生了,这个问题是:我们要将瓶子倾斜多少度时才能降水倒出一半来?这是微积分就派上用场了。 假设花瓶的纵截面是抛物线 Y=ax^2(a>0) 首先,先算出瓶子直立水满时的体积用一个积分就可以了,结果等于V=πh^2/(2a);第二步,假设倾斜角为α,正好倒掉了一半的水,重新建立坐标系,令此时瓶的对称轴为y轴,垂直于瓶的对称轴的射线为x轴,然后将坐标系还原为常规正立的图形,此时瓶里水的横截面图像为抛物线和水面所在直线的公共部分,注意此时水面所在直线与x轴的倾角是刚好为题目所提到的倾斜角α(如原图所示,倾斜后的水平面此时与x轴平行,因此水面与瓶的对称轴的夹角为90-α,也即在新建坐标系下,水面所在直线与y轴的夹角也为90-α,因此它与x轴的夹角为α)。

    所以可以设该直线方程为y=tanα*x+b假设直线与抛物线的交点为A(x0,y0),B(sqrt(h/a),h))(左A,右B)(B点的纵坐标显然等于瓶子的高度h),先利用B点坐标求出直线的截距b,然后联立直线与抛物线方程可以求的A点坐标;第三步,就是求此时瓶中水的体积,可以将图像分为两部分,一部分是直线y=y0与抛物线所交部分,第二部分是直线y=y0、直线y=tanα*x+b及抛物线y=ax^2(a>0)相交部分。第一部分体积为V1=∫π*(x^2)dy=∫π*y/ady(积分上下限为0和y0);第二部分体积为V2=∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h);因此根据: V1+V2=V/2=π*h^2/(4a)=∫π*y/ady(积分上下限为0和y0)+∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h)可以解得所求α值。

    这就是数学于生活紧密联系在一起了,如果数学不能和生活紧密联系在一起,那么数学将变得空洞无力。 著名数学家罗素曾说:“数学如果正确看待他,则具有……至高无上的美——正像雕像的美,是一种冷而严肃的美,这种每部石头和我们的天性的微弱的美,这些煤没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。

    一种精神上的喜悦,一种精神上的亢奋,一种高于人的意识的,这些是至善至美的标准,能够在诗里得到,也能够在数学里得到”这就表明伟大的人物因为有一双善于发现美的眼睛所以他看到了数学隐藏的魅力。除了创造性和发现,想象也是可以使数学在我们思想中得到升华的。

    学了很久的数学了,明卖弄百数学的源远流长于高深莫测,他引领着前进的道路。Hankel,Hermann 说:数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的自由无益的是数学在生活中独特而不可或缺,失去了数学科技水平将倒退。

    这不是耸人听闻,这是对数学这门使人精密学科的肯定,这是不可置否的。 数学不是规律的发现者,因为它不是归纳。

    数学也不是理论的缔造者,因为它不是假说。但数学确实规律和假说的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。

    如果没有数学的认可,则规律不能起作用,理论也不能解释。(来自数学的文化) 数学是重要的,生活不能离开数学,国防发展与科技进步也不能离开数学。

    在遥远的古代中国是引领世界的,因为那时的勤劳人民已发现了数学算筹、《九章算术》……这都是历史留下来的论据。一个国家的强大离不开数学的精密计算。

    21世纪的今天中国已傲然屹立于世界民族之林,为了使国际地位不断提升,我们必须坚定的发展研究数学。

    毕业论文咋个写

    数学与应用数学专业毕业论文(设计)大纲

    先修课程:数学与应用数学专业主要课程、教育类课程等

    适用专业:数学与应用数学(本科、师范)

    一、目的

    培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。

    二、论文选题

    论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:

    1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;

    2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;

    3.结合自己所学的专业知识,联系实际解决一些应用问题;

    4.对中学有关数学课程的教材、教学方法进行专题研究;

    5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;

    6.对新课程改革的理论与实践进行探讨。

    论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。

    三、对毕业论文的基本要求

    1.立论、观点要符合马克思主义基本原理;

    2.对学术的探讨要符合科学性和逻辑性;

    3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;

    4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;

    5.文字通顺,表达确切,书写规范,独立完成;

    6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;

    7.论文应包括英文名、英文摘要和英文关键词;

    8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。

    四、毕业论文成绩评定

    1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。

    2.成绩分5个等级:优秀、良好、中等、及格、不及格。

    毕业生毕业论文统一格式要求

    一、论文用纸:B5纸打印。

    二、论文标题:

    1、主标题:用小二号黑体字,置于首页第一行,居中。

    2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。

    三、论文正文:

    1、字体:用四号仿宋体。

    2、段落:行距为24磅。

    3、页码:居中。

    四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。

    五、注释:如有注释,皆在正文之后注明。

    发表评论

    登录后才能评论