• 首页>范文 > 范文
  • 数学必修4知识点总结

    1.高一数学必修四总结

    最低0.27元/天开通百度文库会员,可在文库查看完整内容> 原发布者:xiayanfeng 高中数学必修4知识点总结第一章:三角函数§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角终边相同的角的集合:.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、.3、弧长公式:.4、扇形面积公式:.§1.2.1、任意角的三角函数1、设是一个任意角,它的终边与单位圆交于点,那么:2、设点为角终边上任意一点,那么:(设),,,3、,,在四个象限的符号和三角函数线的画法.正弦线:MP;余弦线:OM;正切线:AT4、特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.§1.2.2、同角三角函数的基本关系式1、平方关系:.2、商数关系:.3、倒数关系:§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)1、诱导公式一:(其中:)2、诱导公式二:3、诱导公式三:4、诱导公式四:5、诱导公式五:6、诱导公式六:§1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为:§1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数。

    2.数学必修四的知识点 谢了

    主要有两方面:三角函数和平面向量。

    三角函数:一:角概念的推广(1):坐标系《——》正角,负角,零角 (2)弧度制:角《——》数三角函数的公式要记熟。尤其是sin,cos.tan的诱导公式。

    二:图的概念的推广:主要记住sin,cos,tan的图形尤其主要而且一定要掌握五点画图法,很实用,很拿分。平面向量:记几个重要的公式:这个公式我打不出来。

    请你翻阅必修四的书吧。在第88页,94页,96页,98页,103页,104页(重要)书上的例题很重要。

    知识点很多,但是这些是比较重点的内容。我的数学不是很好,请多指教。

    3.高中数学必修4基础知识点

    高中数学必修4知识点 第一章 三角函数 2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在 轴上的角的集合为 终边在 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角 终边相同的角的集合为 4、长度等于半径长的弧所对的圆心角叫做 弧度. 5、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 . 6、弧度制与角度制的换算公式: ,,. 7、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则,,. Pv x y A O M T 8、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是 ,则,,. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 10、三角函数线: ,,. 11、角三角函数的基本关系: ;. 12、函数的诱导公式: ,,. ,,. ,,. ,,. ,.,. 口诀:奇变偶不变,符号看象限.(是 的倍数) 13、①的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象. ②数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象. (都是相对于 而言) 14、函数 的性质: ①振幅: ;②周期: ;③频率: ;④相位: ;⑤初相: . 函数,当时,取得最小值为 ;当时,取得最大值为 ,则,,. 15、正弦函数、余弦函数和正切函数的图象与性质: 函 数 性 质 图象 定义域 值域 最值 当时, ;当 时, . 当时, ;当 时, . 既无最大值也无最小值 周期性 奇偶性 奇函数 偶函数 奇函数 单调性 在 上是增函数;在 上是减函数. 在 上是增函数;在 上是减函数. 在 上是增函数. 对称性 对称中心 对称轴 对称中心 对称轴 对称中心 无对称轴 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为 的向量. 单位向量:长度等于 个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: . ⑷运算性质:①交换律: ; ②结合律: ;③. ⑸坐标运算:设, ,则. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设, ,则. 设、两点的坐标分别为 , ,则. 19、向量数乘运算: ⑴实数 与向量 的积是一个向量的运算叫做向量的数乘,记作 . ①; ②当时, 的方向与 的方向相同;当时, 的方向与 的方向相反;当时, . ⑵运算律:①;②;③. ⑶坐标运算:设 ,则. 20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使. 设, ,其中 ,则当且仅当 时,向量 、共线. 21、平面向量基本定理:如果 、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 ,有且只有一对实数 、,使.(不共线的向量 、作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点 是线段 上的一点, 、的坐标分别是 , ,当时,点 的坐标是 .(当 23、平面向量的数量积: ⑴ .零向量与任一向量的数量积为 . ⑵性质:设和 都是非零向量,则① .②当与 同向时, ;当与 反向时, ;或.③. ⑶运算律:①;②;③. ⑷坐标运算:设两个非零向量 , ,则. 若,则 ,或.设, ,则. 设、都是非零向量, ,,是与 的夹角,则. 第三章 三角恒等变换 24、两角和与差的正弦、余弦和正切公式: ⑴;⑵; ⑶;⑷; ⑸ (); ⑹ (). 25、二倍角的正弦、余弦和正切公式: ⑴. ⑵ 升幂公式 降幂公式 ,. ⑶. 26、(后两个不用判断符号,更加好用) 27、合一变形 把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 形式。

    ,其中 . 28、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍; ② ;问: ; ; ③;④;⑤ ;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常化切为弦,变异名为同名。

    (3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有: (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,。

    4.高一数学必修四基本公式总结我要的是高一数学必修四的那些公式的总

    ·平方关系: sin^2α+cos^2α=1 1+tan^2α=sec^2α 1+cot^2α=csc^2α ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·[1]三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中 sint=B/(A²+B²)^(1/2) cost=A/(A²+B²)^(1/2) tant=B/A Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α) tan(2α)=2tanα/[1-tan²(α)] ·三倍角公式: sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin²(α)=(1-cos(2α))/2=versin(2α)/2 cos²(α)=(1+cos(2α))/2=covers(2α)/2 tan²(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan²(α/2)] cosα=[1-tan²(α/2)]/[1+tan²(α/2)] tanα=2tan(α/2)/[1-tan²(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos²α 1-cos2α=2sin²α 1+sinα=(sinα/2+cosα/2)² ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 cosx+cos2x+。

    +cosnx= [sin(n+1)x+sinnx-sinx]/2sinx 证明: 左边=2sinx(cosx+cos2x+。+cosnx)/2sinx =[sin2x-0+sin3x-sinx+sin4x-sin2x+。

    + sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差) =[sin(n+1)x+sinnx-sinx]/2sinx=右边 等式得证 sinx+sin2x+。+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx 证明: 左边=-2sinx[sinx+sin2x+。

    +sinnx]/(-2sinx) =[cos2x-cos0+cos3x-cosx+。+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx) =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边 等式得证 诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径) 余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA 角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边 斜边与邻边夹角a sin=y/r 无论y>x或y≤x 无论a多大多小可以任意大小 正弦的最大值为1 最小值为-1 三角恒等式 对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC 证明: 已知(A+B)=(π-C) 所以tan(A+B)=tan(π-C) 则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 类似地,我们同样也可。

    5.高中数学必修四复习提纲

    三角函数?一听就懂,一看就会,一做就错?别zd担心咯,给你几条好的方法吧:1 熟记诱导公式,三角变换公式 最好自己拿张A4大小的纸自己推推,哪推不下去哪就问题!!【理解 奇变偶不变 符号看象限 的含义】 2 三角函数题的类型不多,你可以专从课本 辅导书 试题上找一些做作,最好记下一些经典的解题过程,步骤。

    注意运用函数思想 数行结合思想。3 特别注意掌握三角函数图像方面的所有知识,对你的解题有极大的帮助!4 高考中三角函数都不难,选择属大题各一题,考的都比较基本,做高考的三角函数题也不错。

    一个暑假做够你学好三角函数了,好好加油!纯手工呀。

    6.求高一数学必修四的知识点总结,

    总结知识点这样的事还是上课的时候每天都做,休息了再赶基本没效率,我只能给你列一下考点。

    第一章。

    1.熟记每个特殊角所对应弧度。

    2.三角函数的三种基本图像要记住,各自的定义域值域奇偶性周期增减性对称轴对称中心这些如果你数学学得特别好可以不记,考场现场推导,如果不是特别优异的那就背过,其实如果你努力学过数学的话会知道其实没必要刻意背,在一遍遍地做题中就已经熟练了。考试的时候一定会把图像变形考你,规律是x上左加右减,y上上加下减。

    3.诱导公式,这个不少,书上都有自己翻,补充的一个是sin(3π/2+α)=-cosα,sin(3π/2-α)=-cosα,cos(3π/2+α)=sinα,cos(3π/2-α)=-sinα。背吧。

    3.求变形后的函数图像的函数式,通常是考sin的,y=Asin(ωx+φ),w根据周期T求,cos和sin的是T=2π/w,tan是T=π/w。A看图像纵向的中间值,这个图像高度的一半就是A,这个时候只剩下φ一个未知数了,带一组数进去求,这是基本求法,考试还会变形,比如不给全图像,这样有时候求不出A,但一定会给其他条件,想想就行了。

    4.振幅、周期、相位什么的,不是重难点,看看书知道概念就行。

    第二章。

    这儿我学的真的不好= =只能给你点一下。

    1.加减运算里算出0向量一定要加箭头。

    2.数量积公式,从而求数量积,夹角余弦(一向量在另一向量上的投影),考试时普遍给你a和b的绝对值,干这个用的。

    3.求夹角时,两个向量的起点一定要在一点。

    4.三角形不等式,三点共线定理,三角形的中心、重心、中线、垂线什么的判定,选择题常让求一个点的位置。

    5.加减运算求得是向量,数量积求得是一个数。

    6.向量在平面坐标系中的相关。用坐标求数量积,两向量垂直时、平行时的特殊式子,书上都有。

    第三章。

    这里就是无穷无尽的公式,不难,背背背就够了,如果需要,我记了一堆公式,告诉我你qq我发给你图,iPad上我好像没法发图片。

    PS.原创+手打。

    7.必修四数学总结,全点的,谢啦

    三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 降幂公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2万能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)。

    数学必修4知识点总结

    发表评论

    登录后才能评论