• 首页>范文 > 范文
  • 离散数学总结

    1.离散数学学习体会500字怎么写哦

    先说难的吧!我想不论是哪个学校的学生,提到运筹学,没有一个不说它难的。

    我是不知道我们航院教导这门课程的难度有多大,但是只要你考研究生,考管理科学与工程这个专业,全国大部分高校,运筹学是肯定考的。那么就我所学的体会来看,运筹学确实不是那么容易学习。

    但是,它并不是不可攻破,关键看你自己是否下工夫。就拿线性规划来说,表格就得画很多个,如果你没有耐心,估计很难有收获。

    在学习的时候,我建议大家上课一定要认真听,因为书本上的东西,太过于抽象,不容易理解;而老师讲的,比较具体,你只要记下来,课下再看,一般都能看懂。做题一定不要贪多,因为一道题目的书写量很大,你如果做的太多,会因为题目做的很慢而丧失信心。

    从中选择几道题目,把它研究透,收获往往会更大,因为你现在的主要任务是入门,而不是急于求成。 再说离散数学,大家一定不要被它的名字糊住。

    离散数学其实并不是很离散,因为如果你不是计算机专业的学生,学习这门课程,绝对不会讲的很深,只是一个入门而已。所以大家一定不要害怕。

    在学习中,要注意这么一些问题,一定要把题目读懂,反复推敲,因为我发现离散数学的一大难点在于你的语文功底,也即对于句子的理解能力考察;再者,一定要按规矩来解题目,不要标新立异,因为很多问题,你不按规矩,就很容易漏掉一些情况。而且,老师也不喜欢看那种不规范的答题方法,这样会增大它的改卷难度,所以大家一定要注意。

    这就是我对这两门课程的一些体会,仅供大家参考,希望能给大家带来帮助。

    2.学习离散数学的意义

    离散数学是研究散量的结构及其相互关系的数学学科,是现代数学的重要分支,通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为以后续课创造条件而且可以提高抽象思维和逻辑推理能力,为将来参加与创新性的研究和开发工作打下坚实基础。离散从字面上理解好像是一门很散的学科,但觉得离散字面散而其内神不散。

    在中学学习了一些简单逻辑,那些都是一些与生活有关或是学习中一些常识就可判断命题真假的命题。这些简单逻辑对学生的思维逻辑推理能力有一定的训练作用,但中学中的简单逻辑没有严格的证明和公式的推导。一些问题都是凭借日常生活经验或学习中的一些常识就能把命题的正确性作出判断。数理逻辑是以散量为主要载体,通过一系列逻辑连接词来演绎命题并用一定公式判断命题的正确性。数理逻辑对公式有严格的证明,并把命题符号化,使得推理更有序,更可靠。数理逻辑是简单逻辑的提高和精神的升华。数理逻辑提出简单逻辑并未有的散量及一系列公式。数理逻辑为解决简单逻辑的解法提出多样化,为简单逻辑提供更严谨有效的解题途径。

    数理逻辑是数学的一个分支,也是逻辑学的分支。是用数学方法研究逻辑式形式逻辑的学科。其研究对象是对证明和计算这两个直观慨念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。数理逻辑是离散数学的主要组成部分,也是现代科学理论的重要组成部分。现代的电子计算机大多是以散量为基数以数理逻辑的方法而运行的,数理逻辑对计算机技术的发展起到举足轻重的作用,不仅如此,在日常生活中人们学习数理逻辑会对人们在生活中分析一些事物形成独特见解。数理逻辑可以提高抽象思维和逻辑推理能力,为将来参与创新性的研究和开发工作打下结实基础。

    一阶逻辑等值演算与推理,是数理逻辑的重要组成部分,在一阶逻辑中引入了个体词、谓词和量词的一阶逻辑命题符号化的三个基本要素。这在数理逻辑前几章的学习中都是未提到的,然而有了这些基本要素就把数理逻辑所研究的内容加以拓宽,思维的要求也有所提高。一些逻辑等值演算与推理也大大的增加了数理逻辑的推理方式,为数理逻辑在科学理论中的应用添上了浓墨重彩的一笔。对于一阶逻辑等值演算是数理逻辑前几章的延伸,也是前几章的提高。一阶逻辑为以后续课打下了各方面的条件,使得数理逻辑更加完美。

    图论是以图为基本元素,而图的定义是:人们常用点表示事物,用点与点之间是否有某种关系,这样构成的图形就是图论中的图。从这种定义可把数理逻辑的每一个章节的推理公式分为不同的点,而每一章就相当于图论中的图。数理逻辑的各章间的关系就是图与图之间的关系,形成图论的基本要素。从点与点的紧密联系,图与图之间的各项关系,可以看出离散数学是一门严谨的学科,虽然离散字面散而其内神不散。

    3.离散数学学习体会500字怎么写哦

    离散数学和运筹学是在大二下学期学的,这时候才写感悟,确实有些晚了。但既然是为了纪念我的大学数学,还是总结一下学习它们的感受吧。希望对所有即将学习这两门课程的同学有所帮助。

    先说难的吧!我想不论是哪个学校的学生,提到运筹学,没有一个不说它难的。我是不知道我们航院教导这门课程的难度有多大,但是只要你考研究生,考管理科学与工程这个专业,全国大部分高校,运筹学是肯定考的。那么就我所学的体会来看,运筹学确实不是那么容易学习。但是,它并不是不可攻破,关键看你自己是否下工夫。就拿线性规划来说,表格就得画很多个,如果你没有耐心,估计很难有收获。在学习的时候,我建议大家上课一定要认真听,因为书本上的东西,太过于抽象,不容易理解;而老师讲的,比较具体,你只要记下来,课下再看,一般都能看懂。做题一定不要贪多,因为一道题目的书写量很大,你如果做的太多,会因为题目做的很慢而丧失信心。从中选择几道题目,把它研究透,收获往往会更大,因为你现在的主要任务是入门,而不是急于求成。

    再说离散数学,大家一定不要被它的名字糊住。离散数学其实并不是很离散,因为如果你不是计算机专业的学生,学习这门课程,绝对不会讲的很深,只是一个入门而已。所以大家一定不要害怕。在学习中,要注意这么一些问题,一定要把题目读懂,反复推敲,因为我发现离散数学的一大难点在于你的语文功底,也即对于句子的理解能力考察;再者,一定要按规矩来解题目,不要标新立异,因为很多问题,你不按规矩,就很容易漏掉一些情况。而且,老师也不喜欢看那种不规范的答题方法,这样会增大它的改卷难度,所以大家一定要注意。

    这就是我对这两门课程的一些体会,仅供大家参考,希望能给大家带来帮助!

    4.请问离散数学学习体会500字怎么写哦

    先说难的吧!我想不论是哪个学校的学生,提到运筹学,没有一个不说它难的。我是不知道我们航院教导这门课程的难度有多大,但是只要你考研究生,考管理科学与工程这个专业,全国大部分高校,运筹学是肯定考的。那么就我所学的体会来看,运筹学确实不是那么容易学习。但是,它并不是不可攻破,关键看你自己是否下工夫。就拿线性规划来说,表格就得画很多个,如果你没有耐心,估计很难有收获。在学习的时候,我建议大家上课一定要认真听,因为书本上的东西,太过于抽象,不容易理解;而老师讲的,比较具体,你只要记下来,课下再看,一般都能看懂。做题一定不要贪多,因为一道题目的书写量很大,你如果做的太多,会因为题目做的很慢而丧失信心。从中选择几道题目,把它研究透,收获往往会更大,因为你现在的主要任务是入门,而不是急于求成。

    再说离散数学,大家一定不要被它的名字糊住。离散数学其实并不是很离散,因为如果你不是计算机专业的学生,学习这门课程,绝对不会讲的很深,只是一个入门而已。所以大家一定不要害怕。在学习中,要注意这么一些问题,一定要把题目读懂,反复推敲,因为我发现离散数学的一大难点在于你的语文功底,也即对于句子的理解能力考察;再者,一定要按规矩来解题目,不要标新立异,因为很多问题,你不按规矩,就很容易漏掉一些情况。而且,老师也不喜欢看那种不规范的答题方法,这样会增大它的改卷难度,所以大家一定要注意。

    这就是我对这两门课程的一些体会,仅供大家参考,希望能给大家带来帮助!

    5.如何概括离散数学思想

    内容包含:数理逻辑、集合论、代数结构、图论、组合学、数论等。

    离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。

    离散数学通常研究的领域包括:数理逻辑、集合论、关系论、函数论、代数系统与图论。相关书目Kenneth H.Rosen著的Discrete Mathematics and Its Applications,Fourth Edition此书的价值已经被全世界几百所大学所证实,作为离散数学领域的经典教材,全世界几乎所有知名的院校都曾经使用本书作为教材.以我个人观点看来,这本书可以称之为离散数学百科.书中不但介绍了离散数学的理论和方法,还有丰富的历史资料和相关学习网站资源.更为令人激动的便是这本书少有的将离散数学理论与应用结合得如此的好.你可以看到离散数学理论在逻辑电路,程序设计,商业和互联网等诸多领域的应用实例.本书的英文版(第五版)当中更增添了相当多的数学和计算机科学家的传记,是计算机科学历史不可多得的参考资料.作为教材这本书配有相当数量的练习.每一章后面还有一组课题,把学生已经学到的计算和离散数学的内容结合在一起进行训练.这本书也是我个人在学习离散数学时读的唯一的英文教材,实为一本值得推荐的好书。

    离散数学(Discrete Mathematics)是计算机专业的一门重要基础课。它所研究的对象是离散数量关系和离散结构数学结构模型。

    离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。

    离散数学通常研究的领域包括:数理逻辑、集合论、关系论、函数论、代数系统与图论。

    6.谁有离散数学的概念总结呀

    图论基本概念重要定义:有向图:每条边都是有向边的图。

    无向图:每条边都是无向边的图。混合图:既有有向边又有无向边的图。

    自回路:一条边的两端重合。重数:两顶点间若有几条边,称这些边为平行边,两顶点a,b间平行边的条数成为(a,b)的重数。

    多重图:含有平行边的图。简单图:不含平行边和自回路的图。

    注意!一条无向边可以用一对方向相反的有向边代替,因此一个无向图可以用这种方法转化为一个有向图。定向图:如果对无向图G的每条无向边指定一个方向由此得到的有向图D。

    称为的G定向图.底图:如果把一个有向图的每一条有向边的方向都去掉,得无向图G称为的D底图。逆图:把一个有向图D的每条边都反向由此得到的图称为D的逆图。

    赋权图:每条边都赋上了值。出度:与顶点相连的边数称为该定点的度数,以该定点为始边的边数为出度。

    入度:以该定点为终边的边数为入度。特殊!度数为零的定点称为孤立点。

    度数为一的点为悬挂点。无向完全图:在阶无向图中如果任何两点都有一条边关连则称此图是无向完全图。

    Kn完全有向图:在阶有向图中如果任意两点都有方向相反的有向边相连则称此图为完全有向图。竟赛图:阶图中如果其底图是无向完全图,则程此有向完全图是竟塞图。

    注意!n阶有向完全图的边数为n的平方;无向完全图的边数为n(n-1)/2。下面介召图两种操作:①删边:删去图中的某一条边但仍保留边的端点。

    ②删点:删去图中某一点以及与这点相连的所有边。子图:删去一条边或一点剩下的图。

    生成子图:只删边不删点。主子图:图中删去一点所得的子图称的主子图。

    补图:设为阶间单无向图,在中添加一些边后,可使成为阶完全图;由这些添加边和的个顶点构成的图称为的补图。重要定理:定理5.1.1 设图G是具有n个顶点m条边的有向图,其中点集V={v,v,….,v}deg+(vi)=deg-(vi)=m定理5.1.2 设图G是具有n个顶点m条边的无向图,其中点集V={v,v,v,……,v}deg(vi)=2m推论 在无向图中,度数为积数的顶点个数为偶数。

    通路和富权图的最短通路1通路和回路基本概念:通路的长度:通路中边的条数。回路:如果通路中始点与终点相同。

    简单通路:如果通路中各边都不相同。基本通路:如果通路中各顶点都不相同。

    显然(基本通路一定是简单通路,但简单通路不一定是基本通路)可达:在图G中如果存在一条v到d通路则称从v到d是可达。连通:在无向图中如果任意两点是可达的,否则是不连通的。

    强连通:在有向图中如果任意两点是互可达的。单向连通:在有向图中如果存在任意两点的通路。

    弱连通:在有向图中如果其底图是连通的。权:在图的点或边上表明某种信息的数。

    赋权图:含有权的图。赋权图的最短通路问题的算法:先求出到某一点的最短通路,然后利用这个结果再去确定到另一点的最短通路,如此继续下去,直到找到到的最短通路为止。

    指标:设V是图的点集,T是V的子集,且T含有z但不含a,则称T为目标集。在目标集T中任取一个点t,由a到t但不通过目标集T中其它点所有通路中,个边权和的最小者称为点t关与T的指标记作DT(t)。

    图和矩阵住意两个的区别:A·A 中元素的意义:当且仅当a 和a 都是1时,a a =1而a 和a 都为1意味着图G中有边(v ,v )和(v ,v )。于是可得如下结论:从顶点v 和v 引出的边,如果共同终止于一些顶点,则这些终止顶点的数目就是b 的值;特别对于b ,其值就是v 的出度。

    A ·A中元素的意义:当且仅当a 和a 都为1时,a a =1,这意味着图中有边(v ,v )和(v ,v )。于是的得如下结论:从某些点引出的边,如果同时终止于v 和v ,则这样的顶点数就是的值。

    特别对于b ,其值就是的v 入度。幂A 中元素的意义:当m=1时,a 中的元素=1,说明存在一条边(v ,v ),或者说从v 到v 存在一条长度为一的通路。

    A 中元素a 表示从v 到v 的长度为m的所有通路的数目。 欧拉图主要定义:如果图中存在一条通过图中个边一次且仅一次的回路,则称此回路为欧拉回路,具有欧拉回路的图称为欧拉图。

    如果图中存在一条通过图中各边一次且仅一次的通路,则称此回路为欧拉通路,具有欧拉通路的图称为半欧拉图。主要定理:一个无向连通图是欧拉图的充要条件是图中各点的度数为偶数。

    一个无向连通图是半欧拉图的充要条件是图中至多有两个奇数度点。设图G是有向连通图,图G是欧拉图的充要条件是图中每个顶点的入度和出度相等。

    设图G是有向连通图,图G是半欧拉图的充要条件是至多有两个顶点,其中一个顶点入度比它的出度大1,另一个顶点入度比它的出度少1;而其他顶点的入度和出度相等。哈密顿图主要定义:如果图G中存在一条通过图G中各个顶点一次且仅一次的回路,则称此回路为图的哈密顿回路;具有哈密顿回路的图称为哈密顿图。

    如果图G中存在一条通过图G中各个顶点一次且仅一次的回路,则称此回路为图的哈密顿回路;具有哈密顿回路的图称为哈密顿图。 主要定理:设图G是哈密顿图,如果从G中删去个p顶点得到图G',则图G'的连通分支数小于等于p。

    设图G是具有n个顶点的无向简单图,如果G中任意两个不同顶点的度数之和大于等于n-1,则具有哈密顿通路。

    7.如何概括离散数学思想

    内容包含:数理逻辑、集合论、代数结构、图论、组合学、数论等。

    离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。

    离散数学通常研究的领域包括:数理逻辑、集合论、关系论、函数论、代数系统与图论。

    相关书目Kenneth H.Rosen著的Discrete Mathematics and Its Applications,Fourth Edition

    此书的价值已经被全世界几百所大学所证实,作为离散数学领域的经典教材,全世界几乎所有知名的院校都曾经使用本书作为教材.以我个人观点看来,这本书可以称之为离散数学百科.书中不但介绍了离散数学的理论和方法,还有丰富的历史资料和相关学习网站资源.更为令人激动的便是这本书少有的将离散数学理论与应用结合得如此的好.你可以看到离散数学理论在逻辑电路,程序设计,商业和互联网等诸多领域的应用实例.本书的英文版(第五版)当中更增添了相当多的数学和计算机科学家的传记,是计算机科学历史不可多得的参考资料.作为教材这本书配有相当数量的练习.每一章后面还有一组课题,把学生已经学到的计算和离散数学的内容结合在一起进行训练.这本书也是我个人在学习离散数学时读的唯一的英文教材,实为一本值得推荐的好书。

    离散数学(Discrete Mathematics)是计算机专业的一门重要基础课。它所研究的对象是离散数量关系和离散结构数学结构模型。

    离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。

    离散数学通常研究的领域包括:数理逻辑、集合论、关系论、函数论、代数系统与图论。

    8.离散数学

    离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。

    离散数学以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素,因此他充分描述了计算机科学离散性的特点。由于离散数学在计算机科学中的重要性,因此,许多大学都把它作为研究生入学考试的专业课程中的一门,或者是一门中的一部分。

    作为计算机系的一门课程,离散数学有与其它课程相通相似的部分,当然也有它自身的特点,现在我们就它作为考试内容时具有的特点作一个简要的分析。 1、定义和定理多。

    离散数学是建立在大量定义上面的逻辑推理学科。因而对概念的理解是我们学习这门学科的核心。

    在这些概念的基础上,特别要注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。 在考试中的一部分内容就是考察大家对定义和定理的识记、理解和运用。

    如2002年上海交通大学的试题,问什么是相容关系。如果知道的话,很容易得分;如果不清楚,那么无论如何也得不到分数的。

    这类型题目往往因其难度低而在复习中被忽视。实际上这是一种相当错误的认识,在研究生入学考试的专业课试题中,经常出现直接考查对某知识点的识记的题目。

    对于这种题目,考生应该能够准确、全面、完整地再现此知识点。任何的模糊和遗漏,都会造成极为可惜的失分。

    我们建议读者,在复习的时候,对重要知识的记忆,务必以上面提到的“准确、全面、完整”为标准来要求自己,不能达到,就说明还不过关,还要下工夫。关于这一点,在后续章节中我们仍然会强调,使之贯穿于整个离散数学的复习过程中。

    离散数学的定义主要分布在集合论的关系和函数部分,还有代数系统的群、环、域、格和布尔代数中。一定要很好地识记和理解。

    2、方法性强。 离散数学的证明题中,方法性是非常强的,如果知道一道题用怎样的方法证明,很轻易就可以证出来,反之则事倍功半。

    所以在平常复习中,要善于总结,那么遇到比较陌生的题也可以游刃有余了。在本书中,我们为读者总结了不少解题方法。

    读者首先应该熟悉并且会用这些方法。同时我们还鼓励读者勤于思考,对于一道题,尽可能地多探讨几种解法。

    3、有穷性。 由于离散数学较为“呆板”,出新题比较困难,不管什么考试,许多题目是陈题,或者稍作变化的来的。

    “熟读唐诗三百首,不会做诗也会吟。”如果拿到一本习题集,从头到尾做过,甚至背会的话。

    那么,在考场上就会发现绝大多数题见过或似曾相识。这时,要取得较好的成绩也就不是太难的事情了。

    本书是专门针对研究生入学考试而编写的,适合于读者对研究生入学考试的复习。如果还有时间的话,我们可以推荐两本习题集。

    一本是左孝凌老师等编写的《离散数学理论、分析、题解》,另一套有三本,是耿素云老师等编写的《离散数学习题集》。这两套书大多数题都是相同的,只是由于某些符号和定义的不同,使得题目的设定和解法有些不同而已。

    现在我们就分析一下研究生入学考试有哪些题型,以及我们应如何应付。

    离散数学总结

    发表评论

    登录后才能评论